
Real-Time Workshop®

Release Notes

Contents

Summary by Version . 1
About Release Notes . 2

Version 6.4.1 (R2006a+) Real-Time Workshop 4

Version 6.4 (R2006a) Real-Time Workshop 5
New Build Information Application Program Interface . . . 6
New Mechanism for Customizing Post Code Generation

Build Processing . 7
New Model Configuration Option for Suppressing Makefile

Generation . 7
New RSim Target Option for Feeding Inport Blocks with

MAT-File Data . 8
Switch Block Optimization for Wide Control Port Signals

. 8
Multiport Switch Block Enhanced to Generate Default

Switch Case Statement . 8
C++ Language Support Enhancements 9
Support for Simulink Signal Object Initialization 10
Identifiers and Model Reference Applications 11
Support for Simulink Parameter Object Data Type

Enhancements . 11
Support for New Simplest Rounding Mode for Fixed-Point

Simulink Blocks . 11
Name Change for PrevZC Identifier in Generated Code . . 12
Format Enhancements for model.rtw File 12
Changes to TLC Files in matlabroot/rtw/c/tlc 15
New and Enhanced Demos . 16
Documentation Enhancements . 16

Version 6.3 (R14SP3) Real-Time Workshop 17
New rtw_precompile_libs Function 17
Support for Subsystem Latch Enhancements 18
Support for Variable Transport Delay Enhancements 19
C++ Target Language Support for Real-Time Windows

Target and External Mode . 19
Rapid Simulation Target Enhanced for Use with Distributed

Computing Toolbox . 20

iii

Simulink Model and MATLAB Desktop Window Interaction
Enhanced . 20

Customizations to Built-In Blocks . 20
Use slbuild Instead of rtwgen . 20
Model Hardware Configuration Parameters Now Honor

Device Type Restrictions . 21
rem Function No Longer Supports Tunable Arguments . . . 22
Documentation Enhancements . 22

Version 6.2.1 (R14SP2+) Real-Time Workshop 24

Version 6.2 (R14SP2) Real-Time Workshop 25
Model Advisor Enhancements . 25
Rate Transition Block Enhancements 27
Data Store Read Block Enhancement 27
C++ Target Language Support . 28
Support for Open Watcom 1.3 Compiler 30
New Configuration Option for Optimizing Floating-Point to

Integer Data Type Conversions . 30
Task Priority Block Parameters Renamed for

Consistency . 31
New RSim Target Configuration Option 31
LibManageAsyncCounter Function Added to asynclib.tlc

Library . 32
Enhanced Documentation on Integrating Legacy and

Custom Code with Generated Code 32
Documentation Enhancements . 33

Version 6.1 (R14SP1) Real-Time Workshop 35
Changes from the Previous Release 35

Version 6.0 (R14) Real-Time Workshop 36
Tornado Support for VxWorks Target 37
User Interface and Configuration Enhancements 37
Support for New Simulink Model Referencing (Model Block)

Feature . 43
Signal, Parameter Handling, and Interfacing

Enhancements . 45
External Mode Enhancements . 51
Code Customization Enhancements 54
Timing-Related Enhancements . 60
GRT and ERT Target Unification . 64

iv Contents

Global Data Structure Identifiers for Targets Now
Incorporate Model Name . 74

Support for Simulink Configuration Set Feature 74
Hardware Configuration Parameters 76
Enhancements and Changes that Affect Custom Targets . . 77
Shared Utilities Directory and the Build Process 79
Tornado Target Requires Macro in Template Make File . . . 82
Custom Storage Classes Can No Longer Be Used with GRT

Targets . 83
Target Language Compiler Enhancements and Changes . . 84
Documentation Enhancements . 86

Version 5.2 (R13SP2) Real-Time Workshop Toolbox . . . 87

Version 5.1.1 (R13SP1+) Real-Time Workshop
Toolbox . 88
New -dr Command Line Switch in TLC Detects Cyclic

Record Creation . 88
Error Resulting from Inaccessible Signal Reporting No

Longer Reported . 89

Version 5.1 (R13SP1) Real-Time Workshop Toolbox . . . 90

Version 5.0.1 (R13+) Real-Time Workshop Toolbox 91
Expanded Hook File Options . 91
Hook Files for Customizing Make Commands 93

Version 5.0 (R13) Real-Time Workshop Toolbox 94
Compiler Support Enhancements . 95
Model Configuration Features and Enhancements 95
Code Generation Infrastructure Enhancements 101
Block Enhancements . 110
Rapid Simulation Target Enhancement 112
External Mode Enhancements . 113
Simulink Data Object Enhancements 113
model.rtw Changes . 114
Generate HTML Report Option Available for Additional

Targets . 114
Efficiency of Code Generated for GRT and GRT-Malloc

Targets Improved . 115
Logging Code Moved to the Real-Time Workshop

Library . 115

v

Custom Code Blocks Moved from Simulink Library 116
Target Language Compiler Changes 116
Documentation Enhancements . 117
Fixed Bugs . 117
Limitations for HP and IBM Platforms 123

Version 4.1 (R12.1) Real-Time Workshop 124
Block Reduction Option On by Default 125
Buffer Reuse Code Generation Option 125
Build Directory Validation . 126
Build Subsystem Enhancements . 126
C API for Parameter Tuning Documented 127
Code Readability Improvements . 127
Support for Control Flow Blocks . 127
Expression Folding . 127
External Mode Enhancements . 128
Generate Comments Option . 129
Include System Hierarchy in Identifiers Option 129
Rapid Simulation Target Support for Inline Parameters . . 129
S-Function Target Enhancements . 129
Storage Classes for Block States . 130
Support for tilde (~) in Filenames on UNIX Platforms 130
Target Language Compiler Enhancements 130
RTWInfo Property Changed . 132
Fixed Bugs . 133

Version 4.0 (R12) Real-Time Workshop 138
Real-Time Workshop Embedded Coder 139
Support for Simulink Data Objects 139
Support for ASAP2 Data Files . 139
Enhanced Real-Time Workshop Configuration Pane 140
Other User Interface Enhancements 140
Support for New Simulink Advanced Options Pane 140
Model Parameter Configuration Dialog Box 141
Support for Tunable Expressions . 141
S-Function Target Enhancements . 141
External Mode Enhancements . 142
Build Directory . 143
Code Optimization Features . 144
Subsystem Code Generation . 145
Nonvirtual Subsystem Code Generation 145
Standard Filename Extensions for Generated Files 145
hilite_system and Code Tracing . 146

vi Contents

Generation of Parameter Comments 147
Borland 5.4 Compiler Support . 147
Enhanced Makefile Include Path Rules 147
Column-Major Matrix Ordering . 147
S-Function Target MEX-Files Must Be Rebuilt 148
Target Language Compiler Enhancements 148

Compatibility Summary for Real-Time Workshop 153

vii

viii Contents

Real-Time Workshop® Release Notes

Summary by Version
This table provides quick access to what’s new in each version. For
clarification, see “About Release Notes” on page 2.

Version
(Release)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs
and Known
Problems

Related
Documentation
at Web Site

Latest Version
V6.4.1 (R2006a+)

No No Bug Reports
at Web site

Printable Release
Notes: PDF

V6.4.1 product
documentation

V6.4 (R2006a) Yes
Details

Yes
Summary

Bug Reports
at Web site

No

V6.3 (R14SP3) Yes
Details

Yes
Summary

Bug Reports
at Web site

No

V6.2.1 (R14SP2+) No No Bug Reports
at Web site

No

V6.2 (R14SP2) Yes
Details

No Bug Reports
at Web site

No

V6.1 (R14SP1) Yes
Details

No Fixed bugs No

V6.0 (R14) Yes
Details

Yes
Summary

Fixed bugs No

V5.2 (R13SP2) No No Fixed bugs No

V5.1.1 (R13SP1+) Yes
Details

Yes
Summary

Fixed bugs No

V5.1 (R13SP1) No No Fixed bugs No

V5.0.1 (R13+) Yes
Details

No Fixed bugs No

V5.0 (R13) Yes
Details

Yes
Summary

Fixed bugs No

1

http://www.mathworks.com/support/bugreports/?product=RT&release=R2006a%2B
http://www.mathworks.com/access/helpdesk/help/pdf_doc/rtw/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/
http://www.mathworks.com/support/bugreports/?product=RT&release=R2006a
http://www.mathworks.com/support/bugreports/?product=RT&release=R14SP3
http://www.mathworks.com/support/bugreports/?product=RT&release=R14SP2%2B%20
http://www.mathworks.com/support/bugreports/?product=RT&release=R14SP2

Real-Time Workshop® Release Notes

Version
(Release)

New Features
and Changes

Version
Compatibility
Considerations

Fixed Bugs
and Known
Problems

Related
Documentation
at Web Site

V4.1 (R12.1) Yes
Details

Yes
Summary

Fixed bugs No

V4.0 (R12) Yes
Details

Yes
Summary

No bug fixes No

About Release Notes
Use release notes when upgrading to a newer version to learn about new
features and changes, and the potential impact on your existing files and
practices. Release notes are also beneficial if you use or support multiple
versions.

If you are not upgrading from the most recent previous version, review release
notes for all interim versions, not just for the version you are installing. For
example, when upgrading from V1.0 to V1.2, review the New Features and
Changes, Version Compatibility Considerations, and Bug Reports for V1.1
and V1.2.

New Features and Changes
These include

• New functionality

• Changes to existing functionality

• Changes to system requirements (complete system requirements for the
current version are at the MathWorks Web site)

• Any version compatibility considerations associated with each new feature
or change

2

http://www.mathworks.com/products/rtw/requirements.html

Summary by Version

Version Compatibility Considerations
When a new feature or change introduces a known incompatibility between
versions, its description includes a Compatibility Considerations
subsection that details the impact. For a list of all new features and
changes that have compatibility impact, see the “Compatibility Summary for
Real-Time Workshop” on page 153.

Compatibility issues that become known after the product has been released
are added to Bug Reports at the MathWorks Web site. Because bug fixes can
sometimes result in incompatibilities, also review fixed bugs in Bug Reports
for any compatibility impact.

Fixed Bugs and Known Problems
MathWorks Bug Reports is a user-searchable database of known problems,
workarounds, and fixes. The MathWorks updates the Bug Reports database
as new problems and resolutions become known, so check it as needed for
the latest information.

Access Bug Reports at the MathWorks Web site using your MathWorks
Account. If you are not logged in to your MathWorks Account when you link
to Bug Reports, you are prompted to log in or create an account. You then can
view bug fixes and known problems for R14SP2 and more recent releases.

The Bug Reports database was introduced for R14SP2 and does not include
information for prior releases. You can access a list of bug fixes made in prior
versions via the links in the summary table.

Related Documentation at Web Site

Printable Release Notes (PDF). You can print release notes from the PDF
version, located at the MathWorks Web site. The PDF version does not
support links to other documents or to the Web site, such as to Bug Reports.
Use the browser-based version of release notes for access to all information.

Product Documentation. At the MathWorks Web site, you can access
complete product documentation for the current version and some previous
versions, as noted in the summary table.

3

Real-Time Workshop® Release Notes

Version 6.4.1 (R2006a+) Real-Time Workshop
This table summarizes what’s new in V6.4.1 (R2006a+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Bug Reports
at Web site

Printable
Release Notes:
PDF

V6.4.1 product
documentation

4

http://www.mathworks.com/support/bugreports/?product=RT&release=R2006a%2B
http://www.mathworks.com/access/helpdesk/help/pdf_doc/rtw/rn.pdf
http://www.mathworks.com/access/helpdesk/help/toolbox/rtw/

Version 6.4 (R2006a) Real-Time Workshop

Version 6.4 (R2006a) Real-Time Workshop
This table summarizes what’s new in V6.4 (R2006a):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
at Web site

No

New features and changes introduced in this version are

• “New Build Information Application Program Interface” on page 6

• “New Mechanism for Customizing Post Code Generation Build Processing”
on page 7

• “New Model Configuration Option for Suppressing Makefile Generation”
on page 7

• “New RSim Target Option for Feeding Inport Blocks with MAT-File Data”
on page 8

• “Switch Block Optimization for Wide Control Port Signals ” on page 8

• “Multiport Switch Block Enhanced to Generate Default Switch Case
Statement” on page 8

• “C++ Language Support Enhancements” on page 9

• “Support for Simulink Signal Object Initialization” on page 10

• “Identifiers and Model Reference Applications” on page 11

• “Support for Simulink Parameter Object Data Type Enhancements” on
page 11

• “Support for New Simplest Rounding Mode for Fixed-Point Simulink
Blocks” on page 11

• “Name Change for PrevZC Identifier in Generated Code” on page 12

5

http://www.mathworks.com/support/bugreports/?product=RT&release=R2006a

Real-Time Workshop® Release Notes

• “Format Enhancements for model.rtw File” on page 12

• “Changes to TLC Files in matlabroot/rtw/c/tlc” on page 15

• “New and Enhanced Demos” on page 16

• “Documentation Enhancements” on page 16

New Build Information Application Program Interface
V6.4 (R2006a) Real-Time Workshop® introduces an application program
interface (API) for populating and managing all build information associated
with a given model in a single source. This feature

• Provides a mechanism for defining build information for tool chains that
do not use make files

• Makes it easier to customize and maintain a model’s build information

The API includes methods for adding, managing, and retrieving:

• Compiler flags

• Preprocessor identifier definitions

• Link flags

• Include files and paths

• Source files and paths

• Libraries

The API also includes methods for updating file paths, extensions, and
separators.

For information on how to use the API, see the demo rtwdemo_buildInfo
and “Customizing Post Code Generation Build Processing” in the Real-Time
Workshop documentation. For descriptions of the API methods, see
“Functions — By Category” and “Functions — Alphabetical List”.

6

Version 6.4 (R2006a) Real-Time Workshop

New Mechanism for Customizing Post Code
Generation Build Processing
Starting with V6.4 (R2006a), you can customize the Real-Time Workshop
build process to evaluate a post code generation command after generating
and writing the model’s code to disk and before generating a makefile. A
post code generation command is a user-defined M-file that typically calls
functions to get data from or add data to the model’s build information object.

This feature is useful for applications that need to control various aspects of
the build process after code generation. For example, this is necessary when
you develop your own target, or you want to apply an analysis tool to the
generated code before continuing with the build process.

To use this feature, you program the command as a script or function and then
define the command with the new PostCodeGenCommand model configuration
parameter.

For more information, see the demo rtwdemo_buildInfo and “Customizing
Post Code Generation Build Processing” in the Real-Time Workshop
documentation.

New Model Configuration Option for Suppressing
Makefile Generation
V6.4 (R2006a) adds a new option to the Real-Time Workshop pane of the
Configuration Parameters dialog box and a corresponding model configuration
parameter, GenerateMakefile, which you can use to suppress makefile
generation during the build process. For example, you might do this to
integrate tools into the build process that are not driven by makefiles.

This option controls whether Real-Time Workshop generates a makefile
during the build process and is selected by default. If you clear the check
box in the graphical user interface or set the parameter to off, Real-Time
Workshop does not generate a makefile for the model. When you suppress
makefile generation, you must specify any post code generation processing,
including compilation and linking, as a command you program and define,
using the feature described in “New Mechanism for Customizing Post Code
Generation Build Processing” on page 7.

7

Real-Time Workshop® Release Notes

For more information, see “Customizing Post Code Generation Build
Processing”.

New RSim Target Option for Feeding Inport Blocks
with MAT-File Data
The RSim target is enhanced with a new -i command line option that allows
you to feed an Inport block with input data during simulation from a single
MAT-file or you can change the MAT-file from one simulation to the next. The
format requirements of the MAT-file data are flexible in that it can be a single
time/data matrix, a single structure, or multiple structures.

For details on how to set up a MAT-file for use with an Inport block and
specify signal data for an Inport block, see the demo rtwdemo_rsim_i and
“Creating a MAT-File for an Inport Block” and “Specifying Signal Data File
for an Inport Block” in the Real-Time Workshop documentation.

Switch Block Optimization for Wide Control Port
Signals
In releases prior to V6.4 (R2006a), Real-Time Workshop optimized code
generated for a Switch block such that the code for blocks connected to the
data input ports executed conditionally. This optimization was limited to
Switch blocks with a control port receiving scalar signals. V6.4 (R2006a)
enhances Real-Time Workshop to generate code that performs conditional
branch execution whether the Switch block’s control port signal is a scalar
value, a vector, or a matrix.

For a description of the Switch block, see Switch in the Simulink® Reference.

Multiport Switch Block Enhanced to Generate Default
Switch Case Statement
In V6.4 (R2006a), Real-Time Workshop is enhanced to generate a default
switch case statement for the Mulitport Switch block. For a description of this
block, see Multiport Switch in the Simulink Reference.

8

Version 6.4 (R2006a) Real-Time Workshop

C++ Language Support Enhancements
V6.4 (R2006a) Real-Time Workshop adds support for C++ code generation for
Signal Processing Blockset and Video and Image Processing Blockset products.

Limitations

• Microsoft Visual C/C++, GNU C/C++, Watcom C/C++ and Borland®

C/C++ compilers have been fully tested with V6.4 (R2006a) Real-Time
Workshop and are fully supported on 32-bit Windows and 32/64-bit Linux
platforms. However, V6.4 (R2006a) provides Beta C++ support only for the
Intel® C/C++ compiler, which has not yet been fully evaluated for C++
compatibility with MathWorks products.

• Real-Time Workshop provides Beta support for C++ code generation for all
blockset products. C++ code generation for other blockset products has
not yet been fully evaluated.

• Real-Time Workshop does not support C++ code generation for the
following:

Embedded Target for Infineon C166® Microcontrollers
Embedded Target for Motorola® MPC555
Embedded Target for Motorola® HC12
Embedded Target for OSEK/VDX®

Embedded Target for TI C2000™ DSP
Embedded Target for TI C6000™ DSP
SimDriveline
SimMechanics
SimPowerSystems
xPC Target

• When using the model reference feature, the language of the code generated
for the top model and any referenced models must match. For example,
if you generate C++ code for the top model, the generated code for all
referenced models must also be C++ code.

• The following Real-Time Workshop Embedded Coder dialog box fields
currently do not accept the .cpp extension. However, a .cpp file will be
generated if you specify a filename without an extension in these fields,
with C++ selected as the target language for your generated code.

9

Real-Time Workshop® Release Notes

- Data definition filename field on the Data Placement pane of the
Configuration Parameters dialog box

- Definition file field for an mpt data object in the Model Explorer

These restrictions on specifying .cpp will be removed in a future release.

Support for Simulink Signal Object Initialization
V6.4 (R2006a) introduces the ability to initialize Simulink signal objects with
user-defined values for simulation and code generation. Data initialization
increases application reliability and is a requirement of safety critical
applications. Initializing signals for both simulation and code generation can
expedite transitions between phases of Model-Based Design.

For details on using this feature, see the demo rtwdemo_sigobj_iv, “Using
Signal Objects to Initialize Signals and Discrete States” in the Simulink
documentation, and “Using Signal Objects to Initialize Signals and Discrete
States” in the Real-Time Workshop documentation.

Compatibility Considerations
In general, if a submodel uses workspace variables and the variables change,
Real-Time Workshop rebuilds the submodel. This behavior also occurs if the
initial value for a signal object that corresponds to a signal initialized from
outside the model, such as a global data store or root input port, changes.

To work around this behavior, specify the signal object’s initial value as a
tunable parameter. For example:

S = Simulink.Signal;
S.InitialValue = 'K';
K = Simulink.Parameter;
K.Value = 4;
K.RTWInfo.StorageClass = 'ExportedGlobal';

You can then use the tunable parameter to change the signal’s initial value
without triggering a subsystem build.

10

Version 6.4 (R2006a) Real-Time Workshop

Identifiers and Model Reference Applications
As or Version 6.4 (R2006a), to avoid name clashes in models that use model
referencing, do one of the following:

• Increase the maximum identifier length setting for top and referenced
models until the following warning disappears:

"Warning: Insufficient space for computing symbol names in
model ...",

In this case, uniqueness of model names ensures that the names do not
clash.

• If you have a Real-Time Workshop Embedded Coder license, you can
define a unique symbol naming scheme for each model. For example, you
might define 'm1RN$M' for the first model, 'm2RN$M' for the second
model, and so forth. The uniqueness of the naming scheme prevents name
clashing.

Support for Simulink Parameter Object Data Type
Enhancements
V6.4 (R2006a) Real-Time Workshop supports the following Simulink
parameter object data type enhancements discussed in “Data Type Property
of Parameter Objects Now Settable” and “Range-Checking for Parameter and
Signal Object Values” in the Simulink Release Notes.

• Support for fixed-point data types

• Ability to specify the data type attribute independently of the object’s
value attribute

For a discussion on the code generation aspects of this enhancement, see the
demo rtwdemo_paramdt and “Generated Code for Parameter Data Types” in
the Real-Time Workshop documentation.

Support for New Simplest Rounding Mode for
Fixed-Point Simulink Blocks
V6.4 (R2006a) Real-Time Workshop supports the new Simplest rounding
mode that is available for the Round integer calculations toward

11

Real-Time Workshop® Release Notes

parameter of some fixed-point Simulink blocks. This rounding mode attempts
to reduce or eliminate the need for extra rounding code in generated code. The
Simplest rounding mode is currently available for the following blocks:

• Data Type Conversion

• Product

• Lookup Table

• Lookup Table (2-D)

• Lookup Table Dynamic

For more information, see “Simplest Rounding” in the Simulink Fixed Point
documentation.

Name Change for PrevZC Identifier in Generated
Code
In earlier releases, the identifier generated for a data item representing
previous zero-crossing signal states (type PrevZCSigStates_model) was
named inconsistently. Depending on your target configuration, the identifier
could be generated as model_PrevZCSigState or model_PrevZC. In V6.4
(R2006a), the identifier is generated as model_PrevZCSigState across all
configurations. For example, the following would appear in generated C code
for a model named mydemo (for which zero-crossing data is relevant):

/* Previous zero-crossings (trigger) states */
PrevZCSigStates_mydemo mydemo_PrevZCSigState;

Format Enhancements for model.rtw File
Starting in V6.4 (R2006a), Real-Time Workshop represents data type
information in the file model.rtw in a more compact format. This new format
omits the fields ComplexSignal, DataTypeIdx , Dimensions, and Width from
where they occurred in the following records.

12

Version 6.4 (R2006a) Real-Time Workshop

Record Record Type Fields Removed

BlockOutputs Block output
ports

ComplexSignal
DataTypeIdx
Width

Dworks Block
Dworks

ComplexSignal
Width

ExternalInputs External
inputs

ComplexSignal
DataTypeIdx
Width

ExternalOutputs External
outputs

Width

ModelParameters Model
parameters

ComplexSignal
DataTypeIdx
Dimensions
Width

The following topics discuss

• “New Target Language Compiler Library Functions That Support the New
File Format” on page 13

• “Compatibility Considerations” on page 14

New Target Language Compiler Library Functions That Support
the New File Format
In support of the new file format, V6.4 (R2006a) adds the following new
Target Language Compiler (TLC) library functions for gaining access to the
ComplexSignal, DataTypeIdx, Dimensions, and Width fields for a given
record. You can use the new functions with the new and old file formats.

13

Real-Time Workshop® Release Notes

Function Description

LibGetRecordIsComplex(rec) Returns the value 1 if the specified record
is complex, and 0 otherwise.

LibGetRecordDataTypeId(rec) Returns the data type identifier of the
specified record as a an integer.

LibGetRecordDimensions(rec) Returns the dimensions of the specified
record as a vector of integers.

LibGetRecordWidth(rec) Returns the width of the specified record
as an integer.

Compatibility Considerations
The Target Language Compiler (TLC) includes library functions for retrieving
data from fields of the model.rtw file. If your application retrieves data
from model.rtw directly, that is, without using the documented TLC library
functions, the application will be incompatible and will produce incorrect
results. In such cases, reprogram your application to use the documented TLC
library functions to retrieve data from model.rtw.

The following table lists the fields now omitted from model.rtw and the TLC
library functions you can use to gain access to the fields for various types of
records.

Field Record Type TLC Functions

ComplexSignal Block input port LibBlockInputSignalIsComplex
LibGetRecordIsComplex

Block output port LibBlockOutputSignalIsComplex
LibGetRecordIsComplex

Block parameter LibBlockParameterIsComplex
LibGetRecordIsComplex

Block Dwork LibBlockDWorkIsComplex
LibGetRecordIsComplex
(Both functions return 1 or 0, which
map to the old values 'yes' and 'no',
respectively.)

14

Version 6.4 (R2006a) Real-Time Workshop

Field Record Type TLC Functions

DataTypeIdx Block input port LibBlockInputSignalDataTypeId
LibGetRecordDataTypeId

Block output port LibBlockOutputSignalDataTypeId
LibGetRecordDataTypeId

Block parameter LibBlockParameterDataTypeId
LibGetRecordDataTypeId

Block Dwork LibBlockDWorkDataTypeId
LibGetRecordDataTypeId

Dimensions Block input port LibBlockInputSignalDimensions
LibGetRecordDimensions

Block output port LibBlockOutputSignalDimensions
LibGetRecordDimensions

Block parameter LibBlockParameterDimensions
LibGetRecordDimensions

Width Block input port LibBlockInputSignalWidth
LibGetRecordWidth

Block output port LibBlockOutputSignalWidth
LibGetRecordWidth

Block parameter LibBlockParameterWidth
LibGetRecordWidth

Block Dwork LibBlockDWorkWidth
LibGetRecordWidth

For descriptions of the new functions LibGetRecordIsComplex,
LibGetRecordDataTypeId, LibGetRecordDimensions, and
LibGetRecordWidth, see “New Target Language Compiler Library Functions
That Support the New File Format” on page 13. For descriptions of other
functions listed in the preceding table, see “TLC Function Library Reference”
in the Real-Time Workshop Target Language Compiler documentation.

Changes to TLC Files in matlabroot/rtw/c/tlc
TLC files in the directory matlabroot/rtw/c/tlc have changed.

15

Real-Time Workshop® Release Notes

You should not customize TLC files in this directory even though the capability
exists to do so. Such TLC customizations might not be applied during the code
generation process and can lead to unpredictable results.

Compatibility Considerations
Customizations to the files in matlabroot/rtw/c/tlc are not compatible
across releases. If you have customized TLC files that reside in that directory,
you must reapply your customizations when you upgrade.

New and Enhanced Demos
New demos are

Demo... Shows How You Can...

rtwdemo_buildInfo Customize post code generation build
processing by using the new build
information API and new post code
generation command

rtwdemo_paramdt Control the data type of tunable parameters
in code that Real-Time Workshop generates

rtwdemo_rsim_i Use the new -i RSim target option to feed
Inport blocks with MAT-file data

rtwdemo_sigobj_iv Initialize Simulink signal objects with the
new Simulink signal object initialization
feature

The following demos have been enhanced:

• rtwdemo_rsim_batch_script

Documentation Enhancements

• New reference documentation — Real-Time Workshop Reference

• New tables that summarize dependencies of optimization and interface
model configuration parameters

• “Running Rapid Simulations” — reorganized to reflect workflow

16

Version 6.3 (R14SP3) Real-Time Workshop

Version 6.3 (R14SP3) Real-Time Workshop
This table summarizes what’s new in V6.3 (R14SP3):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Bug Reports
at Web site

No

New features and changes introduced in this version are

• “New rtw_precompile_libs Function” on page 17

• “Support for Subsystem Latch Enhancements” on page 18

• “Support for Variable Transport Delay Enhancements” on page 19

• “C++ Target Language Support for Real-Time Windows Target and
External Mode ” on page 19

• “Rapid Simulation Target Enhanced for Use with Distributed Computing
Toolbox” on page 20

• “Simulink Model and MATLAB Desktop Window Interaction Enhanced”
on page 20

• “Customizations to Built-In Blocks” on page 20

• “Use slbuild Instead of rtwgen” on page 20

• “Model Hardware Configuration Parameters Now Honor Device Type
Restrictions” on page 21

• “rem Function No Longer Supports Tunable Arguments” on page 22

• “Documentation Enhancements” on page 22

New rtw_precompile_libs Function
V6.3 (R14SP3) Real-Time Workshop introduces a new M-file function,
rtw_precompile_libs, which you can use to

17

http://www.mathworks.com/support/bugreports/?product=RT&release=R14SP3

Real-Time Workshop® Release Notes

• Precompile new or updated S-function libraries (MEX-files) for a model.
By precompiling S-function libraries, you can optimize system builds.
Once your precompiled libraries exist, Real-Time Workshop can omit
library compilation from subsequent builds. For models that use numerous
libraries, the time savings for build processing can be significant.

• Recompile precompiled libraries included as part of the Real-Time
Workshop product, such as rtwlib or dsplib. You might consider doing
this if you need to customize compiler settings for various platforms or
environments.

For details on using rtw_precompile_libs, see “Precompiling S-Function
Libraries” in the Real-Time Workshop documentation.

Support for Subsystem Latch Enhancements
V6.3 (R14SP3) Real-Time Workshop supports Simulink® latch enhancements
for triggered and function-call subsystems discussed in “Input Port Latching
Enhancements” in the Simulink Release Notes.

• A renamed Inport block option is available for triggered subsystems. Latch
(buffer) input was renamed to Latch input by delaying outside signal
to better reflect the option’s purpose.

• A new option, Latch input by copying inside signal, was added for the
Inport block for use with function-call subsystems.

If you select Latch input by copying inside signal for a function-call
subsystem, Real-Time Workshop

• Preserves latches in generated code regardless of any optimizations that
might be set

• Places the code for latches at the start of a subsystem’s output/update
function

For more detail, see the description of the Inport block.

18

Version 6.3 (R14SP3) Real-Time Workshop

Support for Variable Transport Delay Enhancements
V6.3 (R14SP3) Real-Time Workshop supports new Simulink enhancements
to the Variable Transport Delay block. Prior to V6.3 (R14SP3), the block
performed a variable time delay function. The block has been enhanced
to support both variable time and variable transport delays with a new
parameter Select delay type.

• For instances of the block in existing models, Select delay type is set
to Variable time delay to preserve the block’s variable time delay
behavior. In such cases, you can use the block as is, or consider changing
the parameter settings for transport delay behavior.

• The Simulink Library Browser now offers a Variable Time Delay block and
Variable Transport Delay block, which are instances of the original Variable
Transport Delay block. Both blocks have the delay type parameter, which
is preset depending on the type of block you include. In addition, for the
Variable Time Delay block, you can select a parameter for handling zero
delays. For the Variable Transport Delay block, you can specify a fixed
buffer size and absolute tolerance.

For more detail, see the descriptions of the Variable Time Delay and Variable
Transport Delay blocks.

C++ Target Language Support for Real-Time
Windows Target and External Mode
V6.3 (R14SP3) Real-Time Workshop supports

• C++ code generation for Real-Time Windows target

• The use of external mode with executables it generates from C++ source
files

For more information on C++ target language support, see “Support for C and
C++ Code Generation” in the Real-Time Workshop documentation.

19

Real-Time Workshop® Release Notes

Rapid Simulation Target Enhanced for Use with
Distributed Computing Toolbox
The Rapid Simulation (RSim) target has been enhanced such that RSim
executables that specify a variable step solver do not check out a Simulink
license when run by a worker executing a task created by the Distributed
Computing Toolbox.

Simulink Model and MATLAB Desktop Window
Interaction Enhanced
In V6.3 (R14SP3) Real-Time Workshop, the interaction between Simulink
model and MATLAB® desktop windows during code generation has been
enhanced such that the window layering and input focus during code
generation on Windows systems matches that of Linux systems.

Prior to V6.3 (R14SP3), if you had a Simulink model window on top of the
MATLAB desktop window on a Windows system, the MATLAB desktop
window would move on top of the model window when you generated code
for that model. When code generation was complete, the MATLAB desktop
window would retain input focus. This behavior intentionally differed from
the behavior on Linux systems, which kept the model window on top.

Customizations to Built-In Blocks
The MathWorks recommends that you not customize built-in blocks provided
as part of the Simulink product even though the capability exists to do so.

Compatibility Considerations
Customizations that you make to built-in Simulink blocks might not be
applied during the code generation process and can lead to unpredictable
results.

Use slbuild Instead of rtwgen
The Target Language Compiler documentation for V6.2 (R14SP2) and earlier
recommends using the rtwgen and tlc commands together to create targets
and generate code. Instead, you should use the slbuild command.

20

Version 6.3 (R14SP3) Real-Time Workshop

Compatibility Considerations
The rtwgen command is not intended for direct use, and upgrading Real-Time
Workshop may cause code that uses the command to fail. Existing code that
uses rtwgen should change to use slbuild instead, and new code should use
slbuild exclusively. The syntax for slbuild is

slbuild('model'[,'TargetType'])

Use of the tlc command is unaffected by this change.

Model Hardware Configuration Parameters Now
Honor Device Type Restrictions
Prior to V6.3 (R14SP3), Real-Time Workshop allowed you to use set_param
to modify model hardware configuration settings such that they did not
conform to device type restrictions. In V6.3 (R14SP3), Real-Time Workshop
honors device type requirements associated with the following configuration
parameters:

ProdBitPerLong
ProdBitPerChar
ProdBitPerInt
ProdBitPerShort
ProdIntDivRoundTo
ProdShiftRightIntArith
ProdWordSize
ProdEndianess
TargetBitPerLong
TargetBitPerChar
TargetBitPerInt
TargetBitPerShort
TargetIntDivRoundTo
TargetShiftRightIntArith
TargetWordSize
TargetEndianess

If you attempt to reset of one of these parameters, Real-Time Workshop
returns an error.

21

Real-Time Workshop® Release Notes

Compatibility Considerations
If you set model parameters programmatically, check for and remove instances
of set_param that specify the preceding parameters.

rem Function No Longer Supports Tunable Arguments
V6.3 (R14SP3), the rem function no longer supports tunable parameters when
used with Real-Time Workshop.

Compatibility Considerations
If you use tunable parameters with the rem function, Real-Time Workshop
inlines the equivalent numeric value into the generated code in place of the
tunable expression.

Documentation Enhancements
The following areas of the Real-Time Workshop documentation have been
corrected or enhanced:

• Help button on Real-Time Workshop pane and subpanes of the
Configuration Parameters dialog box — displays help that is specific to
the pane or subpane that is active

• Example index — expanded

• Model reference tutorial

• “Code Generation and the Build Process” — reorganized to reflect workflow
and make key topics more accessible

• “Controlling the Location and Names of Libraries During the Build
Process” — added as a new topic

• “Tunable Expressions in Masked Subsystems”

• “Profiling Generated Code” — added as a new topic

• “Reusable Code and Referenced Models”

• “Sharing Utility Functions”

• “Data Transfer Assumptions” for rate transitions

• “Writing Noninlined S-Functions”

22

Version 6.3 (R14SP3) Real-Time Workshop

• “Build Support for S-Functions”

• “Checksums and the S-Function Target” — added as a new topic

• “Specifying New Signal Data File for a From File Block” when running a
rapid simulation

• “Generating ASAP2 and C-API Files” — added as a new topic

• “Simulink Block Support” — new reference listing Real-Time Workshop
and Real-Time Workshop Embedded Coder block support for blocks
available in Simulink

• Target Language Compiler documentation

23

Real-Time Workshop® Release Notes

Version 6.2.1 (R14SP2+) Real-Time Workshop
This table summarizes what’s new in V6.2.1 (R14SP2+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Bug Reports
at Web site

No

24

http://www.mathworks.com/support/bugreports/?product=RT&release=R14SP2%2B

Version 6.2 (R14SP2) Real-Time Workshop

Version 6.2 (R14SP2) Real-Time Workshop
This table summarizes what’s new in V6.2 (R14SP2):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation
at Web Site

Yes
Details below

No Bug Reports
at Web site

No

New features and changes introduced in this version are

• “Model Advisor Enhancements” on page 25

• “Rate Transition Block Enhancements” on page 27

• “Data Store Read Block Enhancement” on page 27

• “C++ Target Language Support” on page 28

• “Support for Open Watcom 1.3 Compiler” on page 30

• “New Configuration Option for Optimizing Floating-Point to Integer Data
Type Conversions” on page 30

• “Task Priority Block Parameters Renamed for Consistency” on page 31

• “New RSim Target Configuration Option” on page 31

• “LibManageAsyncCounter Function Added to asynclib.tlc Library” on
page 32

• “Enhanced Documentation on Integrating Legacy and Custom Code with
Generated Code” on page 32

• “Documentation Enhancements” on page 33

Model Advisor Enhancements
The Model Advisor analyzes Simulink models for optimal use of Simulink
for simulation and code generation. You can customize the analysis and
resulting report by selecting the checks that you want the Model Advisor to
perform. Real-Time Workshop V6.2 (R14SP2) enhances the Model Advisor by

25

http://www.mathworks.com/support/bugreports/?product=RT&release=R14SP2

Real-Time Workshop® Release Notes

adding several new checks and grouping checks based on their application for
simulation or code generation.

The Model Advisor dialog box now appears as follows:

For more information on the Model Advisor, see “Consulting the Model
Advisor” in the Simulink documentation.

26

Version 6.2 (R14SP2) Real-Time Workshop

Rate Transition Block Enhancements
The Rate Transition block has been enhanced to support:

• Automatic insertion for transitions to or from asynchronous tasks. If you
select the Automatically handle data transfers between tasks on the
Solvers pane of the Configuration Parameters dialog, Simulink detects
rate transitions and inserts Rate Transition blocks automatically to handle
them for asynchronous and periodic tasks. Prior to Version 6.2, automatic
block insertion for asynchronous tasks was not supported. For details,
see “Rate Transition Block Options”.

• Automatic insertion for single-tasking execution mode. If you select
the Automatically handle data transfers between tasks, Simulink
detects rate transitions inserts Rate Transition blocks automatically for
models that execute in single-tasking or multitasking mode. Prior to V6.2
(R14SP2), automatic block insertion for single-tasking execution mode
was not supported. For details, see “Rate Transitions and Asynchronous
Blocks”.

• Asynchronous rates when no priority is specified. You can set the block to
one of two modes—unprotected or data integrity with no determinism.
Prior to V6.2 (R14SP2), the Rate Transition block did not ensure data
integrity for asynchronous rates when the priority was not set. For details,
see “Rate Transitions and Asynchronous Blocks”.

Data Store Read Block Enhancement
The code that Real-Time Workshop generates for the Data Store Read block
has been optimized. Prior to this V6.2 (R14SP2), the code generated for this
block would copy the value of the block to a temporary variable. V6.2 (R14SP2)
Real-Time Workshop eliminates the use of the temporary variable, if possible.

Consider the following model:

A section of the code generated for this model, using an earlier version of
Real-Time Workshop would appear as follows:

27

Real-Time Workshop® Release Notes

/* local block i/o variables */

real_T rtb_DataStoreRead;

/* DataStoreWrite: '/Data Store Write' incorporates:
* Inport: '/In1'
*/

mdsm_opt_DWork.A = mdsm_opt_U.In1;

/* DataStoreRead: '/Data Store Read' */
rtb_DataStoreRead = mdsm_opt_DWork.A;

/* Outport: '/Out1' */
mdsm_opt_Y.Out1 = rtb_DataStoreRead;

Note the value of mdsm_opt_DWork.A is stored in the temporary variable
rtb_DataStoreRead.

The following code fragment shows the comparable section of code
generated by this release of Real-Time Workshop. The temporary variable
rtb_DataStoreRead is no longer used.

/* DataStoreWrite: '/Data Store Write' incorporates:
* Inport: '/In1'
*/

mdsm_opt_DWork.A = mdsm_opt_U.In1;

/* Outport: '/Out1' incorporates:
* DataStoreRead: '/Data Store Read'
*/

mdsm_opt_Y.Out1 = mdsm_opt_DWork.A;

C++ Target Language Support
V6.2 (R14SP2 Real-Time Workshop introduces support for generating C++
code. The primary use for this feature is to facilitate integration of generated
code with legacy or custom user code written in C++.

For information on using this feature, see the following topics in the
Real-Time Workshop documentation:

28

Version 6.2 (R14SP2) Real-Time Workshop

• “Choosing and Configuring a Compiler”

• “Language”

• “Integrating C and C++ Code”

For a demo, enter sfcndemo_cppcount in the MATLAB Command Window.
For a Stateflow® example, enter sf_cpp.

Limitations

• Microsoft Visual C/C++ and GNU C/C++ have been fully tested and are
fully supported on 32–bit Windows and Linux platforms. However, Version
6.2 provides Beta C++ support only for the Watcom, Borland®, and Intel®

C/C++ compilers. These compilers have not yet been fully evaluated for
compatibility with MathWorks products.

• Real-Time Workshop provides Beta support for C++ code generation for
all blockset products. C++ code generation for the blockset products has
not yet been fully evaluated.

• Real-Time Workshop does not support C++ code generation for the
following:

Embedded Target for Infineon C166® Microcontrollers
Embedded Target for Motorola® MPC555
Embedded Target for Motorola® HC12
Embedded Target for OSEK/VDX®

Embedded Target for TI C2000™ DSP
Embedded Target for TI C6000™ DSP
Real-Time Windows Target
SimDriveline
SimMechanics
SimPowerSystems
xPC Target

• Real-Time Workshop does not support the use of external mode with
executables it generates from C++ source files.

• When using the Model Reference feature, you cannot generate C code for
the parent model and C++ code for models that refer to the parent model.

29

Real-Time Workshop® Release Notes

However, you can generate C or C++ for both the parent and referring
models, or C++ code for the parent model and C code for referring models.

• The following Real-Time Workshop Embedded Coder dialog box fields
currently do not accept the .cpp extension. However, a .cpp file will be
generated if you specify a filename without an extension in these fields,
with C++ selected as the target language for your generated code.

- Data definition filename field on the Data Placement pane of the
Configuration Parameters dialog box

- Definition file field for an mpt data object in the Model Explorer

These restrictions on specifying .cpp will be removed in a future release.

Support for Open Watcom 1.3 Compiler
V6.2 (R14SP2) provides Beta support for the Open Watcom 1.3 compiler. The
compiler has not yet been fully evaluated for compatibility with MathWorks
products. However, the support files necessary for you to use the compiler
with MATLAB and the MATLAB Compiler are available. To configure the
compiler, use the mex -setup function. Full support will be available in
a future release.

New Configuration Option for Optimizing
Floating-Point to Integer Data Type Conversions
A new option, Remove code from floating-point to integer conversions
that wraps out-of-range values, has been added to the Optimization
pane of the Configuration Parameters dialog box that you can use to increase
the efficiency of generated code that represents floating-point to integer or
fixed-point data type conversions. The option removes code that ensures that
execution of the generated code produces the same results as simulation when
out-of-range conversions occur. This reduces the size and increases the speed
of the generated code at the cost of potentially producing results that do not
match simulation in the case of out-of-range values.

Consider using this option if code efficiency is critical to your application and
the following conditions are true for at least one block in the model.

• Computing the block’s outputs or parameters involves converting
floating-point data to integer or fixed-point data

30

Version 6.2 (R14SP2) Real-Time Workshop

• The block’s Saturate on integer overflow option is disabled

For more information, see “Remove Code from Floating-Point to Integer
Conversions That Wraps Out-of-Range Values” in the Real-Time Workshop
documentation.

Task Priority Block Parameters Renamed for
Consistency
The Effective priorities parameter for the Async Interrupt block and Task
priority parameter for the Task Sync block are renamed Simulink task
priority. In both cases, the Rate Transition block uses the parameter to
generate the appropriate high-to-low or low-to-high priority transition code.

New RSim Target Configuration Option
A new option, Force storage classes to AUTO, has been added to the
Real-Time Workshop>RSim Target pane of the Configuration Parameters
dialog box. The option is on by default and forces all storage classes to
Auto. If your application requires the use of other storage classes, such a
ExportedGlobal or ImportedExtern, turn this option off. The new option
appears in the Storage Classes section as shown below.

31

Real-Time Workshop® Release Notes

For more information, see “Configuring and Building a Model for Rapid
Simulation”.

LibManageAsyncCounter Function Added to
asynclib.tlc Library
The function LibManageAsyncCounter has been added to the asynclib.tlc
TLC library. This function determines whether an asynchronous task needs a
counter and manages its own timer.

Enhanced Documentation on Integrating Legacy and
Custom Code with Generated Code
Documentation on integrating legacy and custom code with generated code
has been enhanced.

32

Version 6.2 (R14SP2) Real-Time Workshop

• A new section, “Integrating Legacy and Custom Code”, summarizes
the mechanisms available for integrating code generated by Real-Time
Workshop into an existing code base or integrating existing code into code
generated by Real-Time Workshop. In the later scenario, integration can be
either block based or model based. The new summary can help you evaluate
and choose a mechanism that best meets your application requirements and
directs you to other areas of the documentation for implementation details.

• The section “Using the rtwmakecfg.m API” discusses new fields in the
rtwmakecfg.m API that support the Real-Time Workshop build process
for S-functions.

• A new section, “Build Support for S-Functions”, discusses the different
ways of adding build information to the Real-Time Workshop build process.

Documentation Enhancements
The following areas of the Real-Time Workshop documentation have been
corrected or enhanced:

• Integrating custom and legacy code

• References to and screen captures showing new and modified Configuration
Parameter dialog box options

• Descriptions of MaxStackSize and MaxStackVariableSize variables

• Limitations on tunable expressions

• Limitation on Stateflow outputs (removed)

• Symbolic naming conventions for signals in generated code as documented
in “Working with Data Structures”

• Parameter tuning using MATLAB commands

• How to avoid parameter configuration conflicts related to storage classes

• Example for user-defined block state names

• Parameter configuration quick reference diagram (was missing from HTML
output)

• Data type considerations for tunable workspace parameters

• Definitions of top model and reference model in the context of model
referencing

33

Real-Time Workshop® Release Notes

• Deletion of user *.c files from the Real-Time Workshop build directory

• Conditions that need to be met for a block to be considered for dead code
elimination

• Writing S-functions that specify sample time inheritance

• Use of ssSetNeedAbsoluteTime or ssSetNeedElapseTime in S-functions
for accessing timers

• Optimizing with expression folding

• References to the Data Object Wizard (DOW) in the context of using ASAP2

• C API for S-Functions

• External mode parameter descriptions

34

Version 6.1 (R14SP1) Real-Time Workshop

Version 6.1 (R14SP1) Real-Time Workshop
This table summarizes what’s new in V6.1 (R14SP1):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No Fixed bugs No

Changes from the Previous Release
The behavior of the source block dialog has changed. Note that opening
a dialog for a source block causes Simulink® to pause. While Simulink is
paused, you can edit the parameter values. You must close the dialog to have
the changes take effect and allow Simulink to continue.

35

Real-Time Workshop® Release Notes

Version 6.0 (R14) Real-Time Workshop
This table summarizes what’s new in V6.0 (R14):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Fixed bugs No

New features and changes introduced in this version are organized by these
topics:

• “Tornado Support for VxWorks Target” on page 37

• “User Interface and Configuration Enhancements” on page 37

• “Support for New Simulink Model Referencing (Model Block) Feature”
on page 43

• “Signal, Parameter Handling, and Interfacing Enhancements” on page 45

• “External Mode Enhancements” on page 51

• “Code Customization Enhancements” on page 54

• “Timing-Related Enhancements” on page 60

• “GRT and ERT Target Unification” on page 64

• “Global Data Structure Identifiers for Targets Now Incorporate Model
Name” on page 74

• “Support for Simulink Configuration Set Feature” on page 74

• “Hardware Configuration Parameters” on page 76

• “Enhancements and Changes that Affect Custom Targets” on page 77

• “Shared Utilities Directory and the Build Process” on page 79

• “Tornado Target Requires Macro in Template Make File” on page 82

36

Version 6.0 (R14) Real-Time Workshop

• “Custom Storage Classes Can No Longer Be Used with GRT Targets” on
page 83

• “Target Language Compiler Enhancements and Changes” on page 84

• “Documentation Enhancements” on page 86

Tornado Support for VxWorks Target
V6.0 (R14) Real-Time Workshop supports Tornado Version 2.x, which targets
VxWorks 5.x.

User Interface and Configuration Enhancements

• “New Model Explorer and Configuration Parameters Dialogs for Controlling
Code Generation” on page 37

• “Generated Code Report Integrated into Model Explorer” on page 39

• “Model Advisor Helps You to Configure and Optimize Targets” on page 41

• “Real-Time Workshop Now Supports Intel Compiler” on page 42

New Model Explorer and Configuration Parameters Dialogs
for Controlling Code Generation
This release of Simulink features a new user interface for simulation and
code generation, called Model Explorer, which replaces the Simulation
Parameters dialog. When you select Model Explorer from the Tools
menu, the Model Explorer opens in a new window containing three panes,
as shown below:

37

Real-Time Workshop® Release Notes

The Model Explorer features three resizable, scrolling panes:

• Model Hierarchy pane

• Contents pane

• Dialog pane

For more information on the Model Explorer, see “The Model Explorer” in
the Simulink documentation.

You can also control configurations with the standalone Configuration
Parameters dialog. To activate this interface, a model must be open. You can
summon this interface in any of three equivalent ways:

• Choose Configuration Parameters from the Simulation menu.

• Choose Real-Time Workshop -> Options from the Tools menu.

• Type Ctrl+E.

38

Version 6.0 (R14) Real-Time Workshop

The Configuration Parameters dialog with the Optimization pane
selected is shown below:

For details on configuration parameters for code generation, see “Choosing and
Configuring Your Target”,“Adjusting Simulation Configuration Parameters
for Code Generation”, and “Configuring Real-Time Workshop Code Generation
Parameters” in the Real-Time Workshop Documentation.

Generated Code Report Integrated into Model Explorer
You can now browse files generated by Real-Time Workshop, Real-Time
Workshop Embedded Coder, and other products directly in the Model
Explorer. This capability supplements HTML code generation reporting,
which was available in earlier releases.

When you generate code, or open a model that has generated code for its
current target configuration in your working directory, the Model Hierarchy
pane of Model Explorer contains a node named Code for model. Under that
node are other nodes, typically called Top Model and Shared Code.

39

Real-Time Workshop® Release Notes

When you click Top Model, the Contents of pane lists source code files in
the build directory of each model that is currently open. The figure below
shows code for the vdp model.

In this example, the file ./vdp_grt_rtw/vdp.c is being viewed. To view any
file in the Contents of pane, click it once.

40

Version 6.0 (R14) Real-Time Workshop

The views in the dialog pane are read-only. The code listings in that pane
contain hyperlinks to functions and macros in the generated code. A hyperlink
for the file being viewed sits above it. Clicking it opens that file in a text
editing window where you can modify its contents. This is not something you
typically do with generated source code, but in the event you have placed
custom code files in the build directory, you can edit them as well in this
fashion.

If an open model contains Model blocks, and if generated code for any of these
models exists in the current slprj directory, nodes for the referenced models
appear in the Model Hierarchy pane one level below the node for the top
model. Such referenced models do not need to be open for you to browse and
read their generated source files.

The node directly underneath the Top Model node is named Shared Code. It
collects files in the appropriate ./slprj/target/_sharedutils subdirectory,
containing shared fixed-point utility code, if any exists.

The structure and contents of slprj directories are described in “Project
Directory Structure for Model Reference Targets” in the Real-Time Workshop
documentation.

Model Advisor Helps You to Configure and Optimize Targets
The Model Advisor (formerly called Model Assistant) is a tool that helps you
configure any model to optimally achieve code generation objectives. Using it,
you can quickly configure a model for code generation, and identify aspects
of your model that impede production deployment or limit code efficiency.
Clicking the icon labeled Advice on model in the Model Hierarchy pane
launches the Model Advisor. This node is directly below the Code for model
node, as the above figure shows. Clicking the Advice node causes the dialog
pane to be labeled Model Advisor, and to contain a link, Start model
advisor. When you click that link, Model Advisor opens a separate HTML
window with a set of button and check box controls.

Another way to invoke Model Advisor is to type the following command in the
MATLAB Command Window, specifying the name of model.

ModelAdvisor('model')

41

Real-Time Workshop® Release Notes

If the model (assumed to be on the MATLAB path) is not currently open,
the Model Advisor opens it.

The following figure shows a Model Advisor report:

See “Using the Model Advisor” in the Real-Time Workshop documentation
for more information.

Real-Time Workshop Now Supports Intel Compiler
Real Time Workshop now includes support for the Intel compiler (Version 7.1
for Microsoft Windows). The Intel compiler requires Microsoft Visual C/C++
Version 6.0 or higher to be installed.

42

Version 6.0 (R14) Real-Time Workshop

Support for New Simulink Model Referencing (Model
Block) Feature
The new Model block in the Simulink library allows one model to include
another model as if it were a block. This feature, called model reference, works
by generating code for included models that the parent model executes from
a binary library file. In this release, Model reference works on all Unix and
Linux platforms (using the gcc compiler), and on Windows PC platforms
(using the lcc and Visual C++ compilers).

We call models that include Model blocks top models. Model referencing uses
incremental loading. When you open a top model, any models to which it
refers are not loaded into memory until they are needed or you open them.

Note To take advantage of incremental model loading, models called from
Model blocks must be saved at least once with Simulink V6.0 (R14). Top and
referenced models must have Inline parameters set on.

When running simulations, models are included in other models by generating
code for them in a project directory and creating a static library file called a
simulation target (sometimes referred to as a SIM target). When Real-Time
Workshop generates code for referenced models, it follows a parallel process
to create whatever target (for example, GRT) you have specified (sometimes
generically referred to as Real-Time Workshop targets). Real-Time Workshop
also stores the generated code in the project directory, although generated
code for parent models is stored (as in previous releases) in a build directory
at the same level as the model reference project directory.

In addition to incremental loading, the model referencing mechanism employs
incremental code generation. This is accomplished by comparing the date,
and optionally, the structure of model files of referenced models with those
for their generated code to determine whether it is necessary to regenerate
model reference targets. You can also force or prevent code generation via the
diagnostic setting for Rebuild options on the Model Referencing pane of
the Configuration Parameters dialog.

You can learn more about how Model blocks work and generate code by
running the following demos:

43

Real-Time Workshop® Release Notes

• mdlref_basic — General demonstration of using Model blocks

• mdlref_paramargs — Passing parameters to referenced models

• mdlref_bus — Using bus objects to communicate signals to referenced
models

• mdlref_conversion — Automatically converting atomic subsystems in
models to models called with Model blocks.

For more information on generating code for referenced models, including
using mdlref_conversion, see “Generating Code from Models Containing
Model Blocks” and “Generating Code for a Referenced Model” in the Real-Time
Workshop documentation.

Compatibility Considerations for Custom Targets
If you want to adapt a custom target for code generation compatibility with
the model reference features, you need to modify the target’s system target
file (STF) and template makefile (TMF).

General Considerations.

• A model reference compatible target must be derived from the ERT or
GRT targets.

• When generating code from a model that references another model, both
the top-level model and the referenced models must be configured for the
same code generation target.

• Note that the External mode option is not supported in model reference
Real-Time Workshop target builds. If the user has selected this option, it
is ignored during code generation.

• To support model reference builds, your TMF must support use of the
shared utilities directory, as described in “Shared Utilities Directory and
the Build Process” on page 79.

System Target File Modifications. Your STF must implement a
SelectCallback function (see “New SelectCallback Function for System
Target Files” on page 79). Your SelectCallback function must declare model
reference compatibility by setting the ModelReferenceCompliant flag.

44

Version 6.0 (R14) Real-Time Workshop

The callback is executed if the function is installed in the SelectCallback
field of the rtwgensettings structure in your STF. The following code installs
the SelectCallback function:

rtwgensettings.SelectCallback =
['custom_open_callback_handler(hDlg, hSrc)'];

Your callback should set the ModelReferenceCompliant flag as follows.

slConfigUISetVal(hDlg, hSrc, 'ModelReferenceCompliant',
'on');

Template Makefile Modifications. In addition to the TMF modifications
described in “Shared Utilities Directory and the Build Process” on page 79,
you must modify your TMF variables and rules. See “Template Makefile
Modifications” in the Real-Time Workshop documentation for instructions.

Signal, Parameter Handling, and Interfacing
Enhancements

• “New C-API for Accessing Model Block Outputs and Parameter Data” on
page 45

• “Back-Propagating Auto, Test-pointed Signal Labels Through Subsystem
Output Ports” on page 48

• “Declaring Wide Signals, States, and Parameters as
ImportedExternPointer” on page 48

• “Bus Creator Blocks Now Can Emit Structures” on page 49

• “New Options for Controlling Resolution of Signal Objects for Named
Signals and States” on page 50

• “CustomStorageClass and StorageClass Properties Initialized Differently”
on page 50

New C-API for Accessing Model Block Outputs and Parameter
Data
C-API is a target-based Real-Time Workshop feature that provides access to
global block outputs and global parameters in the generated code. Using the

45

Real-Time Workshop® Release Notes

C-API, you can build target applications that log signals, monitor signals and
tune parameters while the generated code executes.

In previous releases, to access model parameters via the C-API, a
model-specific parameter mapping file, model_pt.c was generated. Similarly,
to access the BlockSignals, model_bio.c is generated. The new C-API
improves the efficiency and capability of the interface while reducing its code
size. In addition, the new API supports:

• Referenced models

• Fixed-point data

• Complex data

• Reusable code

The new interface eliminates redundant fields and also improves consistency
between signal and parameter structures. For example, previously the data
name was char_T* for signals but was uint_T for parameters.

The C-API provides a smaller memory footprint. This is achieved by mapping
information common to signals and parameters in smaller structures. An
index into the structure map is provided in the actual signal or parameter
structure. This allows the sharing of data across signals and parameters.

When you select the C-API feature and generate code, Real-Time Workshop
generates two additional files, model_capi.c and model_capi.h, where model
is the name of the model. Real-Time Workshop places the two C-API files in
the build directory, based on settings in the Configuration Parameters dialog
box. The model_capi.c file contains information about global block signals
and global parameters defined in the generated code. The model_capi.h file
is an interface header file between the model source code and the generated
C-API. You can use the information in these C-API files to create your
application. The generated files are illustrated below.

46

Version 6.0 (R14) Real-Time Workshop

For details on how to use the C-API, see “Data Exchange APIs” in the
Real-Time Workshop documentation.

Compatibility Considerations. The old C-API is still available, but at
some point will be eliminated. The following table compares the files in the
two versions:

C-API Files New C-API Files Old C-API Files

Data structure
interface

Unified interface for
signals and parameters:

/rtw/c/src/rtw_capi.h

Signals Interface:

/rtw/c/src/bio_sig.h

Parameters Interface:

/rtw/c/src/pt_info.h

RTModel C API
Interface

/rtw/c/src/rtw_modelmap.h/rtw/c/src/mdl_info.h

TLC files /rtw/c/tlc/mw/capi.tlc /rtw/c/tlc/mw/biosig.tlc

/rtw/c/tlc/mw/ptinfo.tlc

The file rtw_modelmap.h defines structures for mapping data from the
rtModel structure. The file rtw_capi.h provides macros for accessing the
rtModel.

47

Real-Time Workshop® Release Notes

Note Because the data structures used for the different APIs can conflict, you
can generate either C-API or external mode interface code, but not both at
once. The same holds true for ASAP2 interface code, a third data exchange
option available for ERT and GRT targets.

Back-Propagating Auto, Test-pointed Signal Labels Through
Subsystem Output Ports
If a signal exiting an output port of a subsystem has a storage class other
than auto, Real-Time Workshop internally propagates the label on that signal
backwards into the subsystem so that the code generated for the subsystem
uses that signal label, which is defined outside the subsystem.

Compatibility Considerations. Before this release, signal labels were not
back-propagated when the signal’s storage class was auto and it also was
test-pointed. Signal labels are now also back-propagated the if the signal is
test-pointed.

Declaring Wide Signals, States, and Parameters as
ImportedExternPointer
If your model declares the storage class of a signal, state, or parameter
as ImportedExternPointer, your code must define an appropriate pointer
variable.

Compatibility Considerations. In V6.0 (R14), whenever a signal state or
parameter is wide, you must define the variable as a pointer to an array. In
previous versions, an array of pointers was assumed. Here are the changes:

Width Previous Versions V6.0 (R14)

scalar double *x1 double *x1

wide double *x2[] double *x2

The legacy code could define and initialize data as follows:

double x1_data;
double *x1 = &x1_data;

48

Version 6.0 (R14) Real-Time Workshop

double x2_data[10];
double *x2 = x2_data;

This change enables wide data declared as ImportedExternPointer to occupy
contiguous memory locations, making this storage class useful in more
contexts than previously possible.

Bus Creator Blocks Now Can Emit Structures
In past releases, you could not assign a storage class to the output of a Bus
Creator block. If you select the block’s new parameter Output as structure,
the output of the block can be assigned a storage class. This enables bus
signals to occupy contiguous memory. When you select this parameter, you
must specify a Simulink Bus object. You can make and modify bus objects
(class Simulink.Bus) using the Bus Editor. Type buseditor in the MATLAB
Command Window. An example Bus Creator dialog for a block that outputs a
three-element structure is shown below.

For details on working with bus and other Simulink data objects, see the
“Working with Data” in the Simulink documentation.

49

Real-Time Workshop® Release Notes

New Options for Controlling Resolution of Signal Objects for
Named Signals and States
In prior releases, Real-Time Workshop attempted to resolve all signal objects
in a model. Checking all named signals and states was inefficient, complicated
error checking, and now has the potential to cause problems for incremental
code generation for referenced models. To address these concerns, the current
release provides following enhancements:

• Ports and blocks with discrete state now have a setting to indicate whether
or not the port/block requires that a signal label be resolved.

• Models have a parameter to control signal resolution. This option is located
on the Diagnostics/Data Integrity pane of the Configuration Parameters
dialog box.

• A utility function, disableautosignalresolution, is available for
converting existing models (that depended on implicit signal label
resolution) to the new, more efficient approach.

CustomStorageClass and StorageClass Properties Initialized
Differently
V6.0 (R14), Real-Time Workshop merges functionality of custom storage
classes into the standard Simulink.Parameter and Simulink.Signal classes.

Compatibility Consideration. When you instantiate the
Simulink.CustomParameter and Simulink.CustomSignal classes, the
CustomStorageClass and StorageClass properties do not get initialized
the same way they did in V5.0 (R13).

In V5.0 (R13), the properties were initialized as

CustomStorageClass = 'BitField' (1st item on the list)
StorageClass = 'Custom'

Starting in V6.0 (R14),, the properties are initialized as

CustomStorageClass = 'Default' (1st item on the list)
StorageClass = 'Auto' (custom storage class is ignored)

50

Version 6.0 (R14) Real-Time Workshop

External Mode Enhancements

• “External Mode Changes May Impact Customized Makefiles and Static
Main files” on page 51

• “Floating Scopes Now Work in External Mode” on page 52

• “Serial Transport Mechanism for External Mode on Windows” on page 52

• “Upgrading Custom Transport Layers for External Mode to Single-Channel
Architecture” on page 52

• “New Static Memory Allocation Option for External Mode Code Generation”
on page 53

External Mode Changes May Impact Customized Makefiles
and Static Main files
The grt, ert, grt_malloc, rsim, rtwin, and tornado targets support external
mode. For each of these targets, the template makefiles and the system target
files have been changed. In addition, the main() files for each target have also
been modified (although ert may have a dynamic main, which is not affected).

Compatibility Considerations. If you have customized any of these static
files or their makefiles, merge your version with those in the current release if
you intend to support external mode.

The file matlabroot/rtw/ext_mode/common/ext_main.c has also changed
slightly. In function ExtCommMain, the line

ES = (ExternalSim *)plhs

was changed to

ES = (ExternalSim *)plhs[0]

For xPC, the same change was made in function mexFunction in the file
matlabroot/toolbox/rtw/targets/xpc/internal/xpc/src/ext_main.c.

If you created your own custom ext_main.c file, you need to merge this
change to be compatible with the corresponding change to Simulink.

51

Real-Time Workshop® Release Notes

Floating Scopes Now Work in External Mode
It is now possible to use Floating Scope blocks in external mode. A new
section in the External Mode pane, Floating scope, contains the following
new options:

• Enable data uploading

Functions as an “arm trigger” button for floating scopes. When the target is
disconnected, it controls whether or not to “arm when connect” the floating
scopes. When already connected, it acts as a toggle button to arm/cancel
trigger.

• Duration

Specifies the duration for floating scopes. By default it is set to auto, which
picks up the value specified in the signal and triggering GUI (which by
default is 1000).

The behavior of wired Scope blocks is unchanged.

Serial Transport Mechanism for External Mode on Windows
Real-Time Workshop now provides code to implement both the client and
server side using serial as well as TCP/IP protocols. You can use the
socket-based external mode implementation provided by Real-Time Workshop
with the generated code, provided that your target system supports TCP/IP.
Otherwise, use or customize the serial transport layer option provided.

This design makes it possible for different targets to use different transport
layers. The GRT, GRT malloc, ERT, RSim, and xPC targets support host/target
communication via TCP/IP and RS232 (serial) and TCP/IP communication.
Serial transport is implemented only for Windows 32-bit architectures.

For details on how to use the serial transport mechanism for external mode,
see “Using the Serial Implementation”.

Upgrading Custom Transport Layers for External Mode to
Single-Channel Architecture
In earlier releases, external mode had separate logical channels for
messages and data. In the TCP/IP example source files, these channels were
implemented as separate sockets. Now there is only one logical channel

52

Version 6.0 (R14) Real-Time Workshop

(socket), which handles both data and messages (both of which are now called
packets).

Compatibility Considerations. Most users will not notice this change. If,
however, you have created your own custom transport layer for external mode,
you must modify it for the single-channel architecture. Here is a summary of
the changes that you may need to make:

On the target side (see example files in matlabroot/rtw/c/src/):

• Rename the function ExtWaitForStartMsgFromHost() to
ExtWaitForStartPktFromHost().

• Replace the functions ExtSetHostData() and ExtSetHostMsg() with
ExtSetHostPkt().

• Rename the function ExtGetHostMsg() to ExtGetHostPkt().

On the host side (see example files in matlabroot/rtw/ext_mode):

• Replace the functions ExtTargetDataPending() and
ExtTargetMsgPending() with ExtTargetPktPending().

• Replace the functions ExtGetTargetData() and ExtGetTargetMsg() with
ExtGetTargetPkt().

• Rename the function ExtSetTargetMsg() to ExtSetTargetPkt().

For complete instructions, see “Creating an External Mode Communication
Channel”in the Real-Time Workshop documentation.

New Static Memory Allocation Option for External Mode Code
Generation
You can now generate code for external mode such that it uses only static
memory allocation ("malloc-free" code). The Static memory allocation
check box on the GRT and ERT target configuration component, enables this
feature and activates an edit field in which you can specify the size of the static
memory buffer used by external mode. The default value is 1,000,000 bytes.

Should you enter too small a value for your application, external mode issues
an out-of-memory error when it tries to allocate more memory than you are

53

Real-Time Workshop® Release Notes

allowed. In such cases, increase the value of Static memory buffer size
and regenerate the code. Determine how much memory you need to make
available, enable verbose mode on the target (by including OPTS="-DVERBOSE"
on the make command line). As it executes, external mode displays the
amount of memory it tries to allocate and the amount of memory available to
it each time it attempts an allocation. Should an allocation fail, you can use
this console log to adjust the value specified for Static memory buffer size.

For more information on this new option, see “External Mode Interface
Options” in the Real-Time Workshop documentation.

Code Customization Enhancements

• “Source Code for User S-Functions Easier to Include” on page 54

• “Custom Code Block Library Enhancements” on page 55

• “Combining User C++ Files with Generated Code” on page 55

• “Preventing User Source Code from Being Deleted from Build Directories”
on page 55

• “Designating Target-Specific Math Functions” on page 56

• “Hook Files Describing Hardware Characteristics No Longer Supported”
on page 57

Source Code for User S-Functions Easier to Include
In prior releases, Real-Time Workshop sometimes failed to find S-function
source files during a build, even if they were on the MATLAB path, thus
aborting the build with an error. This happened because there were no rules
dynamically added to the generated makefile for handling the directories in
which the S-function MEX-files were located.

Now, Real-Time Workshop adds an include path to the generated makefiles
whenever it finds a file named s-function-name.h in the same directory as the
S-function MEX-file. This directory must be on the MATLAB path.

Similarly, Real-Time Workshop adds a rule for the directory when it finds a file
s-function-name.c (or .cpp) in the same directory as the S-function MEX-file.

54

Version 6.0 (R14) Real-Time Workshop

This enhancement eliminates the need to copy the S-function source file
into the MATLAB current directory or to create an rtwmakecfg.m file in the
S-function’s directory.

Custom Code Block Library Enhancements
The Custom Code Block library has been reinstated into the Real-Time
Workshop library. The library has been simplified. You can use the blocks in
subsystems as in top-level models (with minor exceptions). Custom Code
blocks enable you to add your own code fragments to specific functions in
the source code and header files generated by Real-Time Workshop. You
can include the user code in Real-Time Workshop target code generated for
referenced models (via Model blocks).

Note that custom code that you include in a configuration set is ignored when
building Accelerator, S-function, and model reference simulation targets.

Combining User C++ Files with Generated Code
It is now possible to incorporate user C++ files into both Real-Time Workshop
and Stateflow builds. Real-Time Workshop itself does not generate C++ code;
it simply enables them to be called and incorporated into an executable. For
examples of how to use this capability, see the following demos:

• sf_cpp.mdl — accessible through Stateflow Demos in the Help Browser.

• sfcndemo_cppcount.mdl — (in the sfundemos demo suite, accessible from
Help Browser under Simulink > FeaturesS-Function examples.)

Preventing User Source Code from Being Deleted from Build
Directories
In V5.0 (R13), the behavior of Real-Time Workshop regarding handling of user
source files in the build directory changed. Previously, any .c or .h files that
you placed in the build directory were not deleted when you rebuilt targets.
Now all foreign source files are deleted by default, but you can preserve them
by following the guidelines given below.

If you put a .c or .h source file in a build directory, and you want to prevent
Real-Time Workshop from deleting it during the TLC code generation process,

55

Real-Time Workshop® Release Notes

insert the string target specific file in the first line of the .c or .h file.
For example,

/* COMPANY-NAME target specific file
*
* This file is created for use with the
* COMPANY-NAME target.
* It is used for ...
*/
...

Make sure target specific file is spelled correctly, and occupies the first
line of the source file.

Compatibility Considerations. In addition, flagging user files in this
manner prevents post-processing them to indent them along with generated
source files. Auto-indenting occurred in previous releases to build directory
files with names having the pattern model_*.c (where * could be any string).
The indenting is harmless, but can cause differences to be detected by source
control software that might trigger unnecessary updates.

Designating Target-Specific Math Functions
Target configurations can expressly specify which floating-point math library
to use when generating code. Real-Time Workshop uses a switchyard called
the Target Function Library (TFL) to designate compiler-specific versions of
math functions. The mappings created in the TFL allow C runtime library
support that is specific to a compiler.

Real-Time Workshop provides three different TFLs:

• ansi_tfl_tmw.mat — The ANSI-C library (default)

• iso_tfl_tmw.mat — Extensions for ISO-C/C99

• gnu_tfl_tmw.mat — Extensions for GNU

You choose among them by setting the Target floating point math
environment option on the Real-Time Workshop/Interface pane of the
Configuration Parameters dialog box. This enables you to specify different
runtime libraries for different configuration sets within a given model.

56

Version 6.0 (R14) Real-Time Workshop

Selecting ANSI-C provides the ANSI-C set of library functions. For example,
selecting ANSI-C would result in generated code that calls sin() whether the
input argument is double precision or single precision. However, if you select
ISO-C, the generated code calls the function sinf(), which is single-precision.
If your compiler supports the ISO-C math extensions, selecting the ISO-C
library can result in more efficient code.

Hook Files Describing Hardware Characteristics No Longer
Supported
Real-Time Workshop now provides a menu that includes more than 20 target
processors for the purpose of identifying hardware characteristics, such
as word lengths. In the previous release, this information was stored in
user-supplied hook files, which are no longer supported.

Compatibility Considerations. When you open a preexisting model that
has not been saved using the current version of Simulink, and select the
Hardware Implementation pane of the Configuration Parameters dialog
box, the following set of controls appears:

All but one of the parameters below the Device type menu are grayed out.
This is because these characteristics have been preset for the default target
(32-bit Generic), as well as for several dozen known target processors that
you can select from that menu.

Real-Time Workshop only reads existing hook files when a model created by
V5.0 (R13) Real-Time Workshop is built for the first time in V6.0 (R14) without

57

Real-Time Workshop® Release Notes

you having first specified characteristics of the Current code generation
execution hardware device on the Hardware Implementation pane. If
you build a model in this under-specified state, Real-Time Workshop scans the
current directory, then the MATLAB path, for an existing hook file with the
name target_rtw_info_hook.m. If the file is found, its instructions override
the defaults in that section. You can subsequently specify any characteristic
freely. If at any point prior to building the target code you specify Current
code generation execution hardware device, Real-Time Workshop
ignores hook files , as hardware characteristics are now configured.

When you open a preexisting (before V6.0) model, the Hardware
Implementationpane displays a Configure current execution hardware
device button. This button disappears after you press it once. When code is
generated (Ctrl+B) for the target the model specifies,

• If the target has a hook file, and the Configure current execution
hardware device button has not yet been pressed,

- The hook file is executed and configures the fields specifying current code
generation execution hardware device.

- A warning is issued to the user that the hook file was used.

- The Configure current execution hardware device button on the
Hardware configuration dialog box is permanently removed for that
model (assuming that you save the model).

• If the target has a hook file and the Configure current execution
hardware device button has been pressed (removing it),

- Code is generated for the target using the hardware characteristics
for the current code generation execution hardware device (which can
default to those of the final embedded hardware device).

- The hook file for the target is ignored, and is from now on.

- A warning is issued that a hook file exists but was not used.

• If the target has no hook file, no message to that effect is issued, and the
current code generation execution hardware device, if left unspecified,
defaults to MATLAB host computer for target device information. A
message is displayed during code generation to indicate this

58

Version 6.0 (R14) Real-Time Workshop

This second group of Hardware Implementation pane controls governs how
hardware characteristics are handled in generated code. They do not appear
unless Real-Time Workshop is installed. Their appearance varies depending
on whether hardware configuration characteristics were previously specified
for the model or not. If they were not, you see a button (as illustrated in
the first of the two above figures) labeled Configure current execution
hardware device. This button never again appears for this model once code
has been generated and the model has been saved.

When you click the Configure current execution hardware device
button, it is replaced by a check box labeled None. This box is selected by
default, as shown in the following figure.

If you deselect this box, controls appear for that section that are identical to
the controls for the Embedded Hardware section above, as shown below (in
this example the TI-C6000 processor is selected).

59

Real-Time Workshop® Release Notes

Timing-Related Enhancements

• “Application Lifespan Option Optimizes Timer Data Storage ” on page 60

• “Enabling the Rapid Simulation Target to Time Out” on page 61

• “New Asynchronous Block Library” on page 61

• “Automatic Slow-to-Fast and Fast-to-Slow Transition Detection for Rate
Transition Block” on page 62

• “Automatic Insertion of Rate Transition Blocks” on page 63

• “Enhanced Absolute and Elapsed Time Computation” on page 63

• “Improved Single-Tasking Code Generation” on page 64

Application Lifespan Option Optimizes Timer Data Storage
The Application lifespan (days) field on the Optimization pane of the
Configuration Parameters dialog box lets you specify how long an application,
which contains blocks that depend on elapsed time, should be able to execute
before timer overflow. Specifying it determines the word size used by timers
in the generated code, and can lower RAM usage.

60

Version 6.0 (R14) Real-Time Workshop

Application lifespan, when combined with the step size of each task,
determinates data type of integer absolute time for each task, as follows:

• If your model does not require absolute time, this option affects neither
simulation nor the generated code.

• If your model requires absolute time, this option optimizes the word size
used for storing integer absolute time in generated code. This ensures
that timers will not overflow within the lifespan you specify. If you set
Application lifespan (days) to Inf, two uint32 words are used.

• If your model contains fixed-point blocks that require absolute time, this
option affects both simulation and generated code.

Using 64 bits to store timing data enables models with a step size of 0.001
microsecond (10E-09 seconds) to run for more than 500 years, which would
rarely be required. To run a model with a step size of one millisecond (0.001
seconds) for one day would require a 32-bit timer (but it could continue
running for 49 days).

Application lifespan was an ERT-only option in prior releases.

Enabling the Rapid Simulation Target to Time Out
The Rapid Simulation (RSim) Real-Time Workshop target now has a timeout
execution option, -L n. Use this option to enable the RSim executable to abort
if it is taking excessive time. This can happen, for example, in some models
when zero crossings are frequent and minor step size is small.

For more information and an example, see “Setting a Clock Time Limit for a
Rapid Simulation” in the Real-Time Workshop documentation.

New Asynchronous Block Library
A new VxWorks block library (vxlib1) allows you to model and generate code
for asynchronous event handling, including servicing of hardware generated
interrupts, maintenance of timers, asynchronous read and write operations,
and spawning of asynchronous tasks under a real-time operating system
(RTOS).

61

Real-Time Workshop® Release Notes

Although the blocks in the library target a particular RTOS (VxWorks
Tornado), full source code and documentation are provided so that you can
develop blocks supporting asynchronous event handling for your target RTOS.

The new VxWorks block library supports a superset of the functions of the
older Interrupt Templates library. The new library is easier to use, since
special Asynchronous Read and Write blocks are no longer required to handle
rate transitions.

For descriptions of the VxWorks library blocks and information on gaining
access to the library, see“Asynchronous Support” in the Real-Time Workshop
documentation.

Compatibility Considerations. The older Interrupt Templates library
(vxlib) is obsolete. It is provided only to allow models created prior to
Real-Time Workshop V6.0 (R14) to continue to operate. If you have models
that use vxlib blocks, The MathWorks recommends that you change them
to use vxlib1 blocks.

Automatic Slow-to-Fast and Fast-to-Slow Transition Detection
for Rate Transition Block
The Rate Transition block has been updated to automatically detect whether
transitions must be slow-to-fast or fast-to-slow, and act appropriately.
Accordingly, the Block Parameters dialog box for the block has been modified
to include only the following four options:

• Ensure data integrity during transfer

• Ensure deterministic data transfer

• Outport sample time

• Initial condition

For more information, see “Sample Rate Transitions” in the Real-Time
Workshop documentation.

Compatibility Consideration. Simulink automatically updates all Rate
Transition blocks in a model with this enhancement when you save the model
in V6 (R14).

62

Version 6.0 (R14) Real-Time Workshop

Automatic Insertion of Rate Transition Blocks
When you set up a model to use a fixed-step solver for multitasking, Simulink
now automatically inserts Rate Transition blocks between periodic tasks
that run at different rates and transfer data. This feature does not apply to
transitions to or from non-periodic (asynchronous) tasks. You can control
whether Simulink inserts Rate Transition blocks automatically with the
Automatically handle data transfers between tasks check box on the
Solver pane of the Configuration Parameters dialog box.

Simulink configures the blocks that it inserts automatically to ensure both
data integrity and deterministic data transfer. As mentioned above, this
feature applies to multitasking models only. Rate Transition blocks that
Simulink inserts automatically do not appear on the model’s block diagram.
Nevertheless, they are implemented as semaphores or double buffers,
depending on the constraints being observed, and affect simulation and code
generation.

For more details, see “Automatic Rate Transition” in the Real-Time Workshop
documentation.

Enhanced Absolute and Elapsed Time Computation
Certain blocks require the value of either absolute time (that is, the time
from the start of program execution to the present time) or elapsed time (for
example, the time elapsed between two trigger events). Real-Time Workshop
now provides more efficient time computation services to blocks that request
absolute or elapsed time. These timer services are available to all targets that
support the real-time model (rtModel) data structure. Improvements in the
implementation of absolute and elapsed timers include

• Timers are implemented as unsigned integers in generated code.

• In multirate models, at most one timer is allocated per rate, on an
as-needed basis. If no blocks executing at a given rate require a timer, no
timer is allocated to that rate. This minimizes memory allocated for timers
and significantly reduces overhead involved in maintaining timers.

• Allocation of elapsed time counters for use of blocks within triggered
subsystems is minimized, further reducing memory usage and overhead.

63

Real-Time Workshop® Release Notes

• S-function and TLC APIs let you access timers for use in your S-functions,
in both simulation and code generation.

For more information see “Timing Services” in the Real-Time Workshop
documentation.

Improved Single-Tasking Code Generation
New efficiencies in code generation no longer require code generated for
single-tasking models to test for sample hits in the base rate task. The code
fragment below is an example of such a test in prior versions.

if (rtmIsSampleHit(S,0,tid)) { ...
}

Since the base rate task always has a sample hit, such tests are not needed.
Elimination of this test improves the runtime performance of the generated
code.

GRT and ERT Target Unification
An important goal for both Real-Time Workshop and Real-Time Workshop
Embedded Coder in V6.0 (R14) has been target unification. Target unification
includes enhancements to the underlying technology and features of both
products, such that:

• Both products use a common backend generated code format. This
enhancement, termed code format unification, has a number of implications
(see “Code Format Unification” on page 65).

• The set of features common to both products is expanded. Some features
and efficiencies formerly exclusive to Real-Time Workshop Embedded
Coder and the Embedded Real-Time (ERT) target are now generally
available via the Generic Real-Time (GRT) target. Conversely, the
Real-Time Workshop Embedded Coder now supports some features that
were previously available only via the GRT target (for example, support of
continuous-time blocks and noninlined S-functions).

In general, the GRT and ERT targets have many more common features,
but the ERT target offers additional controls for common features.

• Conversion from GRT-based targets to ERT-based targets is simplified.

64

Version 6.0 (R14) Real-Time Workshop

• The ERT and GRT targets are fully backward-compatible with existing
applications.

The following topics provide a high-level overview and comparison of feature
enhancements and compatibility issues that result from target unification in
Real-Time Workshop V6.0 (R14) and Real-Time Workshop Embedded Coder
V4.0 (R14).

• “Code Format Unification” on page 65

• “Compatibility Considerations for GRT-Based Targets” on page 66

• “Real-Time Workshop and Real-Time Workshop Embedded Coder Feature
Set Comparison” on page 69

• “Symbol Formatting Options Replaced” on page 72

Code Format Unification
Before discussing code format unification, it is necessary to review the
distinction between a target and a code format.

A target (such as the ERT target) is an environment for generating and
building code intended for execution on a certain hardware or operating
system platform. A target is defined at the top level by a system target file,
which in turn invokes other target-specific files.

A code format (such as Embedded-C or RealTime) is one property of a target.
The code format controls decisions made at several points in the code
generation process. These include whether and how certain data structures
are generated (for example, SimStruct or rtModel), whether or not static
or dynamic memory allocation code is generated, and the calling interface
used for generated model functions. In general, the Embedded-C code format
is more efficient than the RealTime code format. Embedded-C code format
provides more compact data structures, a simpler calling interface, and static
memory allocation. These characteristics make the Embedded-C code format
the preferred choice for production code generation.

In prior releases, only the ERT target and targets derived from the ERT
target used the Embedded-C code format. Non-ERT targets used other code
formats (for example, RealTime or RealTimeMalloc).

65

Real-Time Workshop® Release Notes

In V6.0 (R14, the GRT target uses the Embedded-C code format for backend
code generation. This includes generation of both algorithmic model code and
supervisory timing and task scheduling code. The GRT target (and derived
targets) generates a RealTime code format wrapper around the Embedded-C
code. This wrapper provides a calling interface that is backward-compatible
with existing GRT-based custom targets. The wrapper calls are compatible
with the main program module of the GRT target (grt_main.c). This use of
wrapper calls incurs some calling overhead; the pure Embedded-C calling
interface generated by the ERT target is more highly optimized.

The calling interface generated by the ERT target is described in “Data
Structures and Program Execution” of the Real-Time Workshop Embedded
Coder documentation. The calling interface generated by the GRT
target is described in “Program Architecture” of the Real-Time Workshop
documentation.

Since the GRT target now uses the Embedded-C code format for backend code
generation, many Embedded-C optimizations are available to all Real-Time
Workshop users. In general, the GRT and ERT targets have many more
common features, but the ERT target offers additional controls for common
features. The availability of features is now determined by licensing, rather
than being tied to code format.

Code format unification simplifies the conversion of GRT-based custom targets
to ERT-based targets. See “Compatibility Considerations for GRT-Based
Targets” on page 66 for a description of target conversion issues.

Compatibility Considerations for GRT-Based Targets
If you have developed a GRT-based custom target, it is simple to make
your target ERT-compatible. By doing so, you can take advantage of many
efficiencies.

There are several approaches to ERT compatibility:

• If your installation is not licensed for Real-Time Workshop Embedded
Coder, you can convert a GRT-based target as described in “Converting
Your Target to Use rtModel” on page 67. This enables your custom target
to support all current GRT features, including backend Embedded-C code
generation.

66

Version 6.0 (R14) Real-Time Workshop

• You can create an ERT-based target, but continue to use your customized
version of grt_main.c module. To do this, you can configure the ERT target
to generate a GRT-compatible calling interface, as described in “Generating
GRT Wrapper Code from the ERT Target” on page 69. This lets your target
support all ERT features without changing your GRT-based runtime
interface. This approach requires that your installation be licensed for
Real-Time Workshop Embedded Coder.

• If your installation is licensed for Real-Time Workshop Embedded Coder,
you can reimplement your custom target as a completely ERT-based target,
including use of an ERT generated main program. This approach lets your
target support all ERT features, without the overhead caused by wrapper
calls.

Note If you intend to use custom storage classes (CSCs) with a custom target,
you must use an ERT target. See “Custom Storage Classes” in the Real-Time
Workshop Embedded Coder documentation for information on CSCs.

For details on how GRT targets are made call-compatible with previous
versions of Real-Time Workshop, see “The Real-Time Model Data Structure”
in the Real-Time Workshop documentation.

Converting Your Target to Use rtModel. The real-time model data
structure (rtModel) encapsulates model-specific information in a much more
compact form than the SimStruct. Many ERT-related efficiencies depend on
generation of rtModel rather than SimStruct, including:

• Integer absolute and elapsed timing services

• Independent timers for asynchronous tasks

• Generation of improved C-API code for signal and parameter monitoring

To take advantage of such efficiencies, you must update your GRT-based
target to use the rtModel, unless you already did so for V5.0 (R13). The
conversion requires changes to your system target file, template makefile,
and main program module.

67

Real-Time Workshop® Release Notes

To use rtModel instead of SimStruct, make the following changes to the
system target file and template makefile:

• In the system target file, add the following global variable assignment:

%assign GenRTModel = TLC_TRUE

• In the template makefile, define the symbol USE_RTMODEL. See one of the
GRT template makefiles for an example.

Make the following changes to your main program module (that is, your
customized version of grt_main.c):

• Include rtmodel.h instead of simstruc.h.

• Since the rtModel data structure has a type that includes the model name,
define the following macros at the top of main program file:

#define EXPAND_CONCAT(name1,name2) name1 ## name2

#define CONCAT(name1,name2) EXPAND_CONCAT(name1,name2)

#define RT_MODEL CONCAT(MODEL,_rtModel)

• Change the extern declaration for the function that creates and initializes
the SimStruct to:

extern RT_MODEL *MODEL(void);

• Change the definitions of rt_CreateIntegrationData and
rt_UpdateContinuousStates to be as shown in the Release 14 version
of grt_main.c.

• Change all function prototypes to have the argument 'RT_MODEL' instead
of the argument 'SimStruct'.

• The prototypes for the functions rt_GetNextSampleHit,
rt_UpdateDiscreteTaskSampleHits, rt_UpdateContinuousStates,
rt_UpdateDiscreteEvents, rt_UpdateDiscreteTaskTime, and
rt_InitTimingEngine have changed. Change their names to use the prefix
rt_Sim instead of rt_ and then change the arguments you pass into them.

68

Version 6.0 (R14) Real-Time Workshop

See the V6.0 (R14) version of grt_main.c for the list of arguments passed
into each function.

• Modify all macros that refer to SimStruct to now refer to rtModel.
SimStruct macros begin with the prefix ss, whereas rtModel macros
begin with the prefix rtm. For example, change ssGetErrorStatus to
rtmGetErrorStatus.

Generating GRT Wrapper Code from the ERT Target. The Real-Time
Workshop Embedded Coder supports the GRT compatible call interface
option. When you select this option, Real-Time Workshop Embedded Coder
generates model function calls that are compatible with the main program
module of the GRT target (grt_main.c). These calls act as wrappers that
interface to ERT (Embedded-C format) generated code.

This option provides a quick way to use ERT target features with a GRT-based
custom target that has a main program module based on grt_main.c.

See “Code Generation Options and Optimizations” in the Real-Time Workshop
Embedded Coder documentation for detailed information on the GRT
compatible call interface option.

Real-Time Workshop and Real-Time Workshop Embedded
Coder Feature Set Comparison
The approach you should take to achieve ERT compatibility depends on the
features required by your custom target. The following table will help you
decide whether or not you require features licensed for Real-Time Workshop
Embedded Coder.

For detailed information about these features, see the Real-Time Workshop
and Real-Time Workshop Embedded Coder documentation.

69

Real-Time Workshop® Release Notes

Feature
Real-Time Workshop
License

Real-Time Workshop
Embedded Coder License

rtModel data structure Full rtModel struct
generated.

rtModel is optimized for the
model. Suppression of error
status field, data logging fields,
and in the struct is optional.

Custom storage classes (CSCs) Code generation ignores CSCs;
objects assigned a CSC default
to Auto storage class.

Code generation with CSCs
supported.

HTML code generation report Basic HTML code generation
report.

Enhanced report with
additional detail and
hyperlinks to the model.

Symbol formatting Symbols (for signals,
parameters etc.) are generated
in accordance with hard coded
default.

Detailed control over
generated symbols.

User-defined maximum
identifier length for generated
symbols

Supported Supported

Generation of terminate
function

Always generated. Option to suppress terminate
function.

Combined output/update
function

Separate output/update
functions are generated.

Option to generate combined
output/update function.

Optimized data initialization Not available. Options to suppress generation
of unnecessary initialization
code for zero-valued memory,
I/O ports, etc.

Comments generation Basic options to include or
suppress comment generation.

Options to include Simulink
block descriptions, Stateflow
object descriptions, and
Simulink data object
descriptions in comments.

70

Version 6.0 (R14) Real-Time Workshop

Feature
Real-Time Workshop
License

Real-Time Workshop
Embedded Coder License

Module Packaging Features
(MPF)

Not supported. Extensive code customization
features. See the Real-time
Workshop Embedded Coder
documentation.

Target-optimized data types
header file

Requires full tmwtypes.h
header file.

Generates optimized
rtwtypes.h header file,
including only the necessary
definitions required by the
target.

User-defined types User defined types default to
base types in code generation.

User defined data type
aliases are supported in code
generation.

Simplified call interface Non-ERT targets default to
GRT interface.

ERT and ERT-based targets
generate simplified interface.

Rate grouping Not supported Supported

Auto-generation of main
program module

Not supported; static main
program module provided.

Automated and customizable
generation of main program
module supported. Static main
program also available.

MAT-file logging No option to suppress MAT-file
logging data structures.

Option to suppress MAT-file
logging data structures.

Reusable (multi-instance) code
generation with static memory
allocation

Not supported. Option to generate reusable
code.

Software constraint options Support for floating point,
complex, and non-finite
numbers always enabled.

Options to enable or disable
support for floating point,
complex, and non-finite
number.

Application life span User-specified; determines
most efficient word size for
integer timers. Defaults to
inf.

User-specified; determines
most efficient word size for
integer timers.

71

Real-Time Workshop® Release Notes

Feature
Real-Time Workshop
License

Real-Time Workshop
Embedded Coder License

Software-in-the-loop (SIL)
testing

Model reference simulation
target can be used for SIL
testing.

Additional SIL testing
support via auto-generation of
Simulink S-Function block.

ANSI-C code generation Supported Supported

ISO-C code generation Supported Supported

GNU-C code generation Supported Supported

Generate scalar inlined
parameters

Not supported Supported

MAT-file variable name
modifier

Supported Supported

Data exchange: C-API,
External Mode, ASAP2

Supported Supported

Symbol Formatting Options Replaced
This note discusses changes in the way that symbols are generated for

• Signals and parameters that have Auto storage class

• Subsystem function names that are not user-defined

• All Stateflow names

The following Real-Time Workshop model configuration options, all related
to formatting generated symbols, have been removed from the Configuration
Parameters dialog box and replaced with a default symbol formatting
specification.

• Prefix model name to global identifiers

• Include System Hierarchy Number in Identifiers

• Include data type acronym in identifier

The components of a generated symbol now include the root model name,
followed by the name of the generating object (signal, parameter, state, and so

72

Version 6.0 (R14) Real-Time Workshop

on), followed by a unique name mangling string that is generated (if required)
to resolve potential conflicts with other generated symbols.

The length of generated symbols is limited by the Maximum identifier
length parameter specified on the Real-Time Workshop>Symbols pane of
the Configuration Parameters dialog. The default length is 31 characters.
When there is a potential name collision between two symbols, Real-Time
Workshop generates a name mangling string. The string has the minimum
number of characters required to avoid the collision. Real-Time Workshop
then inserts the other symbol components. If the Maximum identifier
length is not large enough to accommodate full expansions of the other
components, they are truncated.

Compatibility Considerations. To avoid truncation that can result from the
new default symbol formatting specification, it is good practice to

• Avoid name collisions in general. One way to do this is to avoid using
default block names (for example, Gain1, Gain2...) when there are many
blocks of the same type in the model. Also, whenever possible, make
subsystems atomic and reusable.

• Where possible, increase the Maximum identifier length to accommodate
the length of the symbols you expect to generate.

Within a model that uses model referencing, there can be no collisions
between the names of the constituent models. When generating code from
a model that uses model referencing, the Maximum identifier length
must be large enough to accommodate full the root model name and the
name mangling string (if any). A code generation error occurs if Maximum
identifier length is not large enough.

When a name conflict occurs between a symbol within the scope of a
higher-level model and a symbol within the scope of a referenced model, the
symbol from the referenced model is preserved. Name mangling is performed
on the symbol from the higher-level model.

Real-Time Workshop Embedded Coder provides a Symbol format field that
lets you control the formatting of generated symbols in much greater detail.
See “Code Generation Options and Optimizations” in the Real-Time Workshop
Embedded Coder documentation for more information.

73

Real-Time Workshop® Release Notes

Global Data Structure Identifiers for Targets Now
Incorporate Model Name
Global data structures, such as rtB, rtP and rtY have new identifiers in
ERT and GRT generated code. For GRT, these names now include the model
name followed by _B, _P, _Y, and so on. (ERT targets provide you with flexible
naming options as explained in “Symbol Formatting Options Replaced” on
page 72). The construction of identifiers was changed to prevent name clashes
when code for models containing Model blocks is generated and linked.

Compatibility Considerations
If you are interfacing external code to any Simulink global data, you
mightneed to use the GRT compatible calling interface for ERT-based targets
(see “Generating GRT Wrapper Code from the ERT Target” on page 69 for
more information). The GRT interface enables you to access global data using
the old-style identifiers via a set of macros that map old-style to new-style
identifiers. See “Backwards Compatibility of Code Formats” in the Real-Time
Workshop documentation for details.

Support for Simulink Configuration Set Feature

• “Suppport for New Simulink getActiveConfigSet Function” on page 74

• “New switchTarget Function” on page 75

Suppport for New Simulink getActiveConfigSet Function
A new function, getActiveConfigSet, provides safe access to option settings
stored in the active configuration set. The function returns an object through
which you can access properties of the model’s active configuration set. The
following example shows how to call getActiveConfigSet to turn the ERT
option Single output/update function off.

cs = getActiveConfigSet(model);
set_param(cs, 'CombineOutputUpdateFcns', 'off');

74

Version 6.0 (R14) Real-Time Workshop

Compatibility Considerations. In prior releases, it was possible to
access code generation options and other model parameters stored in the
rtwOptions data structure directly, by using get_param and set_param calls.
In the following code excerpt, for example, the value of the ERT Single
output/update function option is changed from on to off.

options = get_param(model, 'RTWOptions');

strrep(options, 'CombineOutputUpdateFcns=1', 'CombineOutputUpdateFcns=0');

set_param(model, 'RTWOptions', options);

If you have written code that accesses the rtwOptions structure directly, as in
the above example, you should update your code to use getActiveConfigSet
instead. Due to changes in underlying data structures, code that accesses
rtwOptions directly as above will no longer work correctly.

An alternative and more flexible method for automatic configuration of model
options is available to users of the Real-Time Workshop Embedded Coder. See
“Auto-Configuring Models for Code Generation” in the Real-Time Workshop
Embedded Coder documentation for more information.

New switchTarget Function
In V6.0 (R14) Simulink models store model-wide parameters and
target-specific data in configuration sets. Every configuration set contains a
component that defines the structure of a particular target and the current
values of target options. Some of this information is loaded from a system
target file when you select a target using the System Target File Browser.
You can configure models to generate alternative target code by copying and
modifying old or adding new configuration sets and browsing to select a new
target. Subsequently, you can interactively select an active configuration from
among these sets (only one configuration set can be active at a given time).

Real-Time Workshop has added a new function, switchTarget, to support
configuration sets and enable you to automate target selection from scripts.
Arguments that you pass to the function include a handle to the model’s active
configuration set and a string that specifies a system target file.

For more information, see “Selecting a System Target File Programmatically”
in the Real-Time Workshop Documentation.

75

Real-Time Workshop® Release Notes

Hardware Configuration Parameters

Compatibility Considerations
When you open a preexisting model that has not been saved using V6.0 (R14)
of Simulink, and select Hardware in the Configuration Parameters dialog
box, the following set of controls appears:

All but one of the parameters below the Device type menu are grayed out.
This is because these characteristics have been preset for the default target
(32-bit Generic), as well as for several dozen known target processors that
you can select from that menu.

In the event that none of the choices listed in the Device Type drop-down
menu is appropriate for your intended hardware target, you can select Custom,
and then set values for the hardware characteristics. Selecting any other
option disables them. The hardware characteristics that you can specify are

• Number of bits — Text fields that specify the number of bits used to
represent types char, short, int, and long. The values specified should
be consistent with the word sizes as defined in the compiler’s limits.h
header file.

• Byte ordering — Specifies whether the target hardware uses Big Endian
(most significant byte first) or Little Endian (least significant byte first)
byte ordering. If left as Unspecified, Real-Time Workshop generates code
to determine the endianness of the target; this is the least efficient option.

76

Version 6.0 (R14) Real-Time Workshop

• Shift right on a signed integer as arithmetic shift — ANSI C leaves
the behavior of right shifts on negative integers as implementation
dependent. Use this control to specify how Real-Time Workshop
implements right shifts on signed integers in generated code.

The option is selected by default. If your C or C++ compiler handles right
shifts as arithmetic shifts, this is the preferred setting.

- When the option is selected, Real Time Workshop generates simple
efficient code whenever the Simulink model performs arithmetic shifts
on signed integers.

- When the option is unselected, Real Time Workshop generates fully
portable but less efficient code to implement right arithmetic shifts.

Enhancements and Changes that Affect Custom
Targets

Defining and Displaying Custom Target Options
For release 14, extensive improvements and revisions have been made in the
appearance and layout of code generation options and other target-specific
options for Real-Time Workshop targets. If you have developed a custom
target, you should take advantage of the Model Explorer to present target
options to end users.

Compatibility Considerations. To take advantage of the Model Explorer
for presenting target options, you must modify your custom system target file.
If you do not want to make the changes, a mechanism for using the old-style
Simulation Parameters dialog is available for backwards compatibility.

77

Real-Time Workshop® Release Notes

The following figure shows an example of what users would see if you do not
upgrade and the Embedded Target for Motorola® HC12 target is selected.

Instead of one Real-Time Workshop>Target tab, this dialog has four:
ERT Code Generation options 1 through 3, External mode options,
and Code Warrior options (not all are visible in the figure). Targets that
have not been updated to use configuration sets will display similar dialogs.
In addition, there is a Launch old simprm dialog button at the bottom of
the dialog. Targets that use the Simulation Parameters dialog to handle
callbacks will work without updating for Model Explorer only if the user uses
this button and then builds from the Simulation Parameters dialog. Note
that configuration set dialogs can issue callbacks but handle them differently
than did the Simulation Parameters dialog.

See the “Real-Time Workshop® Embedded Coder Release Notes” for details.

78

Version 6.0 (R14) Real-Time Workshop

New SelectCallback Function for System Target Files
The V6.0 (R14) API for system target file callbacks provides a new
SelectCallback function for use in system target files. This function is
associated with the target rather than with any of its individual options. If
you implement a SelectCallback function for the target, it is triggered once,
when the user selects the target via the System Target File Browser.

For details on using the selectCallback function, see “SelectCallback Function
for System Target Files” in the Real-Time Workshop documentation.

Compatibility Considerations. If you have developed a custom target and
you want it to be compatible with model referencing, you must implement
a SelectCallback function to declare model reference compatibility. See
“Compatibility Considerations for Custom Targets” on page 44 in the
Real-Time Workshop documentation for an example.

Shared Utilities Directory and the Build Process
The shared utilities directory (slprj/target/_sharedutils) typically stores
generated utility code that is common between a top-level model and the
models it references. You can also force the build process to use a shared
utilities directory for a standalone model. See “Project Directory Structure
for Model Reference Targets” in the Real-Time Workshop documentation for
details.

Compatibility Considerations
If you want your target to support compilation of code generated in the shared
utilities directory, several updates to your template makefile (TMF) are
required. Note that support for the shared utilities directory is a necessary,
but not sufficient, condition for supporting Model Reference builds. See
“Compatibility Considerations for Custom Targets” on page 44 to learn about
additional updates that are needed for supporting model reference builds.

The exact syntax of the changes can vary due to differences in the make
utility and compiler/archive tools used by your target. The examples below
are based on the GNU make utility. You can find the following updated TMF
examples for GNU and Microsoft Visual C make utilities in the GRT and
ERT target directories:

79

Real-Time Workshop® Release Notes

• GRT: matlabroot/rtw/c/grt/

- grt_lcc.tmf

- grt_vc.tmf

- grt_unix.tmf

• ERT: matlabroot/rtw/c/ert/

- ert_lcc.tmf

- ert_vc.tmf

- ert_unix.tmf

Use the GRT or ERT examples as a guide to the location, within the TMF, of
the changes and additions described below.

Note The ERT-based TMFs contain extra code to handle generation of ERT
S-functions and Model Reference simulation targets. Your target does not
need to handle these cases.

Make the following changes to your TMF to support the shared utilities
directory:

1 Add the following make variables and tokens to be expanded when the
makefile is generated:

SHARED_SRC = |>SHARED_SRC<|
SHARED_SRC_DIR = |>SHARED_SRC_DIR<|
SHARED_BIN_DIR = |>SHARED_BIN_DIR<|
SHARED_LIB = |>SHARED_LIB<|

SHARED_SRC specifies the shared utilities directory location and the source
files in it. A typical expansion in a makefile is

SHARED_SRC = ../slprj/ert/_sharedutils/*.c

SHARED_LIB specifies the library file built from the shared source files, as
in the following expansion.

80

Version 6.0 (R14) Real-Time Workshop

SHARED_LIB = ../slprj/ert/_sharedutils/rtwshared.lib

SHARED_SRC_DIR and SHARED_BIN_DIR allow specification of separate
directories for shared source files and the library compiled from the source
files. In the current release, all TMFs actually use the same path, as in the
following expansions.

SHARED_SRC_DIR = ../slprj/ert/_sharedutils
SHARED_BIN_DIR = ../slprj/ert/_sharedutils

2 Set the SHARED_INCLUDES variable according to whether shared utilities
are in use. Then append it to the overall INCLUDES variable.

SHARED_INCLUDES =

ifneq ($(SHARED_SRC_DIR),)

SHARED_INCLUDES = -I$(SHARED_SRC_DIR)

endif

INCLUDES = -I. $(MATLAB_INCLUDES) $(ADD_INCLUDES) \

$(USER_INCLUDES) $(SHARED_INCLUDES)

3 Update the SHARED_SRC variable to list all shared files explicitly.

SHARED_SRC := $(wildcard $(SHARED_SRC))

4 Create a SHARED_OBJS variable based on SHARED_SRC.

SHARED_OBJS = $(addsuffix .o, $(basename $(SHARED_SRC)))

5 Create an OPTS (options) variable for compilation of shared utilities.

SHARED_OUTPUT_OPTS = -o $@

6 Provide a rule to compile the shared utility source files.

$(SHARED_OBJS) : $(SHARED_BIN_DIR)/%.o :
$(SHARED_SRC_DIR)/%.c

$(CC) -c $(CFLAGS) $(SHARED_OUTPUT_OPTS) $<

81

Real-Time Workshop® Release Notes

7 Provide a rule to create a library of the shared utilities. The following
example is Unix-based.

$(SHARED_LIB) : $(SHARED_OBJS)
@echo "### Creating $@ "
ar r $@ $(SHARED_OBJS)
@echo "### Created $@ "

8 Add SHARED_LIB to the rule that creates the final executable.

$(PROGRAM) : $(OBJS) $(LIBS) $(SHARED_LIB)

$(LD) $(LDFLAGS) -o $@ $(LINK_OBJS) $(LIBS) $(SHARED_LIB)
$(SYSLIBS)

@echo "### Created executable: $(MODEL)"

9 Remove any explicit reference to rt_nonfinite.c from your TMF. For
example. change

ADD_SRCS = $(RTWLOG) rt_nonfinite.c

to

ADD_SRCS = $(RTWLOG)

Note If your target interfaces to a development environment that is not
makefile based, you must make equivalent changes to provide the needed
information to your target compilation environment.

Tornado Target Requires Macro in Template Make File
Tornado 2.2.1 installs standard header files in an include directory under
the target compiler target directory. For example, if you are targeting the
Motorola 68k processor for VxWorks with the GCC 2.96 compiler, Tornado
installs the header files at the following location:

WIND_BASE/host/WIND_HOST_TYPE/lib/gcc-lib/m68k-wrs-vxworks
/gcc-2.96/include

82

Version 6.0 (R14) Real-Time Workshop

If you are using a version of Tornado lower than 2.2.1, leave the macro
commented out.

Compatibility Considerations
To use Tornado 2.2.1 or higher with the Tornado (VxWorks) Real-Time Target,
tornado.tlc, you must enable a macro in template makefile tornado.tmf as
follows:

1 Open matlabroot/rtw/c/tornado/tornado.tmf.

2 Search for TORNADO_TARGET_COMPILER_INCLUDES.

3 Uncomment the macro TORNADO_TARGET_COMPILER_INCLUDES and set it to
the include directory that contains the Tornado standard header files.

Given the path shown above, you would set the macro as follows:

TORNADO_TARGET_COMPILER_INCLUDES =
$(WIND_BASE)/host/$(WIND_HOST_TYPE)/lib/gcc-lib/m68k-wrs-v
xworks/gcc-2.96/include

Although this example shows the macro definition wrapped, you should
include it on a single line.

Custom Storage Classes Can No Longer Be Used with
GRT Targets
In prior releases, it was possible to use custom storage classes with the GRT
target if a Real-Time Workshop Embedded Coder license was available. In
V6.0 (R14), you can no longer use custom storage classes when you generate
code for GRT-based targets.

For information on how GRT and ERT targets now compare, see “Global
Data Structure Identifiers for Targets Now Incorporate Model Name” on page
74. See “Code Generation Options and Optimizations” in the Real-Time
Workshop Embedded Coder documentation for detailed information on the
GRT compatible call interface option.

83

Real-Time Workshop® Release Notes

Compatibility Considerations
If you have licensed Real-Time Workshop Embedded Coder and want to build
a model that uses custom storage classes with the GRT target, you should
instead use ERT Target, and enable the GRT compatible call interface
option. This option appears on theReal-Time Workshop>Interfacepane
of the Configuration Parameters dialog box. When you use this option,
Real-Time Workshop Embedded Coder generates GRT-compatible code that
can include custom storage classes.

Target Language Compiler Enhancements and
Changes

• “ISSLPRMREF TLC Built-In Supports Parameter Sharing with Simulink”
on page 84

• “New Argument for TLC GENERATE_FORMATTED_VALUE Built-In
Function” on page 85

• “Accessing the Number of Sample Times from TLC for Custom Targets”
on page 85

• “TLC TLCFILES Built-In Now Returns Full Path to Model File Rather
Than Relative Path” on page 85

ISSLPRMREF TLC Built-In Supports Parameter Sharing with
Simulink
To support parameter sharing with Simulink, a new built-in function
(ISSLPRMREF) has been added to the Target Language Compiler. It returns a
Boolean value indicating whether its argument is a reference to a Simulink
parameter or not. Using this function can save memory and time during
code generation. Here is an example:

%if !ISSLPRMREF(param.Value)
%assign param.Value = CAST("Real", param.Value)

%endif

84

Version 6.0 (R14) Real-Time Workshop

New Argument for TLC GENERATE_FORMATTED_VALUE Built-In
Function
The GENERATE_FORMATTED_VALUE built-in function has a new optional third
argument. The syntax for the function is now

GENERATE_FORMATTED_VALUE(expr, string, expand)

The third argument is a Boolean, which when TRUE, causes expr to be
expanded into raw text before being output. expand=TRUE uses much more
memory than the default (FALSE). Set expand=TRUE only if the parameter text
needs to be processed for some reason before being written to disk.

Accessing the Number of Sample Times from TLC for Custom
Targets
In previous release, you could directly access an undocumented TLC
variable, NumSampleTimes, which held the number of periodic (synchronous)
sample times. In the current release, the variable that holds the number
of periodic sample times is called NumSynchronousSampleTimes. In
addition, there are two new variables, NumAsynchronousSampleTimes and
NumVariableSampleTimes. The total number of sample times in a model
is given by:

NumSampleTimes = NumSynchronousSampleTimes +
NumAsynchronousSampleTimes + NumVariableSampleTimes

Compatibility Considerations. Do not use NumSampleTimes. Instead, call
TLC library functions, as follows:

• LibNumDiscreteSampleTimes() to access NumSynchronousSampleTimes

• LibNumAsynchronousSampleTimes() to access
NumAsynchronousSampleTimes

TLC TLCFILES Built-In Now Returns Full Path to Model File
Rather Than Relative Path
A change in TLC invocation now specifies a full path to model files rather
than a relative path.

85

Real-Time Workshop® Release Notes

Compatibility Considerations. This change creates backwards
incompatibility in some custom targets.

When migrating V5.0 (R13) custom targets to V6.0 (R14) , check for and
adjust usage of the TLC function TLCFILES to determine context, such as the
path to the model file, as necessary.

Documentation Enhancements

• “Getting Started with Real-Time Workshop” has been fully updated and
includes a new tutorial on generating code for referenced models.

• “Real-Time Workshop User’s Guide” is updated, and includes most of the
information on new features described in this chapter.

• “Real-Time Workshop Target Language Compiler” has een updated. This
document no longer includes an appendix describing all the records that
might be encountered in a model.rtw file.

86

Version 5.2 (R13SP2) Real-Time Workshop Toolbox

Version 5.2 (R13SP2) Real-Time Workshop Toolbox
This table summarizes what’s new in V5.2 (R13SP2):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Fixed bugs No

87

Real-Time Workshop® Release Notes

Version 5.1.1 (R13SP1+) Real-Time Workshop Toolbox
This table summarizes what’s new in V5.1.1 (R13SP1+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Fixed bugs No

New features and changes introduced in this version are

• “New -dr Command Line Switch in TLC Detects Cyclic Record Creation”
on page 88

• “Error Resulting from Inaccessible Signal Reporting No Longer Reported”
on page 89

New -dr Command Line Switch in TLC Detects Cyclic
Record Creation
The -dr command line option enables the Target Language Compiler to
detect at run time when cyclic records are created and to produce a diagnostic
message.

Cyclic records are problematic because they cause memory leaks in TLC.
A cyclic record is one which ends up pointing to itself. They only can be
constructed manually, as in the following example:

%createrecord x { } %% create an empty record x
%createrecord y { } %% create an empty record y

%addtorecord x field y %% add a field to x which points to y
%addtorecord y field x %% add a field to y which points to x

88

Version 5.1.1 (R13SP1+) Real-Time Workshop Toolbox

At this point, a cyclic record exists — x.field.field == x.

As this feature significantly slows Target Language Compiler performance, it
is off by default.

Error Resulting from Inaccessible Signal Reporting
No Longer Reported

Compatibility Considerations
In previous releases, Simulink and the Real-Time Workshop reported an
error whenever a Floating Scope or a user-written S-function tried to access
an inaccessible signal during simulation or code generation. In this release,
Simulink displays only a warning if you use the sim command to start the
simulation. Real-Time Workshop generates neither a warning nor an error
message.

89

Real-Time Workshop® Release Notes

Version 5.1 (R13SP1) Real-Time Workshop Toolbox
This table summarizes what’s new in V5.1 (R13SP1):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

No No Fixed bugs No

90

Version 5.0.1 (R13+) Real-Time Workshop Toolbox

Version 5.0.1 (R13+) Real-Time Workshop Toolbox
This table summarizes what’s new in V5.0.1 (R13+):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

No Fixed bugs No

New features and changes introduced in this version are

• “Expanded Hook File Options” on page 91

• “Hook Files for Customizing Make Commands” on page 93

Expanded Hook File Options
This update adds new options for specifying target characteristics via hook
files.

During its build process, Real-Time Workshop checks for the existence of
target_rtw_info_hook.m, where target is the base file name of the active
system target file. For example, if your system target file is grt.tlc, then the
hook file name is grt_rtw_info_hook.m. If the hook file is present (that is, is
on the MATLAB path), the target specific information is extracted via the API
found in this file. Otherwise, the host computer is the assumed target.

Three hook file keyword options have been added since V5.0 (R13):

• TypeEmulationWarnSuppressLevel

Suppresses warnings about emulation of word sizes. The default value is 0,
which gives full warnings. This is the preferred setting when generating
code for the production target. Increasing the value gives less warnings.
When generating code for a rapid prototyping system, emulation may not
be a concern and a suppression level of 2 may be desirable.

91

Real-Time Workshop® Release Notes

• PreprocMaxBitsSint:

Specifies limitations of the target C preprocessor to do math with signed
integers. Use this option to prevent errors in the preprocessor phase.

As an example, suppose the target had 64-bit longs. Porting the generated
code to a machine that does not have 64-bit longs can lead to errors in
the processing of integer data types. To prevent these errors, a check is
included in the generated code.

#if (LONG_MAX != (0x7FFFFFFFFFFFFFFFL))
#error Code was generated for compiler with different sized
longs.
#endif

This code requires the preprocessor to compare signed 64-bit integers.
Some preprocessors have bugs that cause such comparisons to yield
incorrect results. The preprocessor math may only be fully correct for say
32-bit signed integers. To specify, this PreprocMaxBitsSint would be set to
32. Generating the code with this setting causes problematic size checks to
be skipped.

#if 0
/*
Skip this size verification because of preprocessor
limitation
*/
#if (LONG_MAX != (0x7FFFFFFFFFFFFFFFL))
#error Code was generated for compiler with different sized
longs.
#endif
#endif

• PreprocMaxBitsUint

Specifies limitations of the target C preprocessor to do math with unsigned
integers. This is just like PreprocMaxBitsSint except that it pertains to
unsigned integer operations such as

#if (ULONG_MAX != (0xFFFFFFFFFFFFFFFFUL))

92

Version 5.0.1 (R13+) Real-Time Workshop Toolbox

If you are not certain about the proper settings for your target, you can get
more details by typing rtwtargetsettings in the MATLAB Command
Window.

Hook Files for Customizing Make Commands
Custom targets may require a target-specific hook file to generate
an appropriate make command when a non-default compiler
is used. Such M-files should be located on the MATLAB path
and be named target_wrap_make_cmd_hook.m (for example,
MPC555pil_wrap_make_cmd_hook.m for the MPC555 PIL target).
When such a file exists, and returns an appropriate make command,
Real-Time Workshop overrides its default (for example, Lcc) batch
file wrapping code. For an example make command hook file, see
matlabroot/toolbox/rtw/rtw/wrap_make_cmd.m. Such hook files are distinct
from the target-specific hook files used to describe hardware characteristics
(see “Expanded Hook File Options” on page 91).

93

Real-Time Workshop® Release Notes

Version 5.0 (R13) Real-Time Workshop Toolbox
This table summarizes what’s new in V5.0 (R13):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Fixed bugs No

New features and changes introduced in this version are organized by these
topics:

• “Compiler Support Enhancements” on page 95

• “Model Configuration Features and Enhancements” on page 95

• “Code Generation Infrastructure Enhancements” on page 101

• “Block Enhancements” on page 110

• “Rapid Simulation Target Enhancement” on page 112

• “External Mode Enhancements” on page 113

• “Simulink Data Object Enhancements” on page 113

• “model.rtw Changes” on page 114

• “Generate HTML Report Option Available for Additional Targets” on page
114

• “Efficiency of Code Generated for GRT and GRT-Malloc Targets Improved ”
on page 115

• “Logging Code Moved to the Real-Time Workshop Library” on page 115

• “Custom Code Blocks Moved from Simulink Library” on page 116

• “Target Language Compiler Changes” on page 116

• “Documentation Enhancements” on page 117

94

Version 5.0 (R13) Real-Time Workshop Toolbox

• “Fixed Bugs” on page 117

• “Limitations for HP and IBM Platforms” on page 123

Compiler Support Enhancements

• “Expanded Support for Borland C Compilers” on page 95

• “Lcc Now Links Libraries in Directory sys/lcc/lib” on page 95

Expanded Support for Borland C Compilers
Real-Time Workshop supports Version 5.6 of the Borland C compiler.

In addition, V5.0 (R13) reinstates support for Borland Version 5.2
"out-of-the-box" for all targets, except when importing S-functions that
Real-Time Workshop generates. In such instances, designate the build
directory where the S-function may be found via the make_rtw parameter
USER_INCLUDES. For example, suppose you had generated S-function target
code for model modelA.mdl in build directory D:\modelA_sfcn_rtw and were
using that S-function in model modelB.mdl. In modelB.mdl, the Make
command field of your Target configuration category should define
USER_INCLUDES as follows:

make_rtw "USER_INCLUDES=-ID:\modelA_sfcn_rtw"

Lcc Now Links Libraries in Directory sys/lcc/lib
Template makefiles have been updated to include linking against
sys/lcc/lib.

Model Configuration Features and Enhancements

• “Diagnostics Pane Items Classified into Logical Groups” on page 96

• “Comments Not Generated for Reduced Blocks When "Show eliminated
statements" Is Off” on page 96

• “New General Code Appearance Options” on page 97

95

Real-Time Workshop® Release Notes

• “Identifier Construction for Generated Code Has Been Simplified” on page
100

• “GUI Control over Behavior of Assertion Blocks in Generated Code” on
page 100

• “GUI Control Over TLC %assert Directive Evaluation” on page 101

Diagnostics Pane Items Classified into Logical Groups
To make selecting diagnostics easier, the Diagnostics entries on the
Simulation Parameters dialog box have been reorganized according to
functionality, and alphabetically within each group, as shown below.

Comments Not Generated for Reduced Blocks When "Show
eliminated statements" Is Off
The Show eliminated statements option (in the Real-Time Workshop
General code generation options category) is now off by default. As
long as it remains off, Real-Time Workshop no longer generates comments
referring to blocks that have been removed from the model via block reduction
optimization.

96

Version 5.0 (R13) Real-Time Workshop Toolbox

Compatibility Considerations. If you want Real-Time Workshop to
generate comments for blocks that are removed due for block reduction
optimization, select the Show eliminated statements option.

New General Code Appearance Options
A new section has been added to the Real-Time Workshop pane of the
Simulation Parameters dialog box, named General code appearance
options. The new section groups four new code formatting options to two
existing options. The General code appearance appear as shown below.

The four new options are

Option Description

Maximum identifier length Allows you to limit the number of characters
in function, type definition, and variable
names. The default is 31 characters, but
Real-Time Workshop imposes no upper
limit.

97

Real-Time Workshop® Release Notes

Option Description

Include data type acronym
in identifier

Prepends acronyms such as i32 (for
long integers) to signal and work vector
identifiers to make code more readable.
The default is not to include data type
acronyms in identifiers.

Include system hierarchy
number in identifiers

Adds prefixes s#_, where # is a unique
integer subsystem index, to identifiers
declared in that subsystem. This enhances
traceability of code, for example via the
hilite_system<`S#'> command. The
default is not to include a system hierarchy
index in identifiers.

Prefix model name to
global identifiers

Prefixes subsystem function names with
the name of the model (model_). The model
name is also prefixed to the names of
functions and data structures at the model
level, when appropriate to the code format.
This is useful when you need to compile
and link code from two or more models into
a single executable, as it avoids potential
name clashes. This option is on by default.

98

Version 5.0 (R13) Real-Time Workshop Toolbox

Option Description

Generate scalar inline
parameters as:

Controls the code style for inlined
parameters. You can set this option to
literals or macros. When constant
parameters are inlined and declared not
tunable, the following code generation
options are available:

• Vector parameters were formerly stored
as constant parameters in rtP vectors.
Now they are declared as constant
vectors of appropriate type, independent
of rtP.

• Scalar parameters were formerly inlined
as literals. In addition to this approach,
users now have the option to have scalar
parameters expressed as #define macro
definitions.

The default is to generate scalar inline
parameters as literals.

Note: S-functions can mark a run-time
parameter as being constant to
guarantee that it never ends up
in the rtP data structure. Use
ssSetConstRunTimeParamInfo in the
S-function to register a constant runtime
parameter.

Generate comments An existing global option moved from
the General code generation options
(cont) category to this one. As in the prior
release, by default Generate comments
is on.

99

Real-Time Workshop® Release Notes

Identifier Construction for Generated Code Has Been Simplified
The methods Real-Time Workshop uses to construct identifiers for variables
and functions have been enhanced to make identifiers more understandable
and more customizable. As a result of these enhancements

• Changes to sections of the model do not cause identifiers elsewhere to
change.

• Reused function input arguments now derive their name from the inport
block.

• Subsystem function names can be prefixed by the model name to prevent
link errors due to name conflicts.

• You can specify a maximum identifier length (can be > 31 characters).

• A new option exists to include a data type acronym in identifiers.

• Use of _a, _b, ... postfixes to identifiers to prevent name clashes has been
dramatically reduced.

GUI Control over Behavior of Assertion Blocks in Generated
Code
The Advanced pane of the Simulation Parameters dialog box provides a
new Model Verification block control popup menu you can use to specify
whether model verification blocks such as Assert, Check Static Gap, and
related range check blocks will be enabled, not enabled, or default to their
local settings. This popup menu has the same effect on code generated by
Real-Time Workshop as it does on simulation behavior, and also may be
customized.

For Assertion blocks that are not disabled, the generated code for a model
includes one of the following statements at appropriate locations, depending
on the block’s input signal type (Boolean, real, or integer, respectively).

utAssert(input_signal);
utAssert(input_signal != 0.0);
utAssert(input_signal != 0);

By default utAssert is a non-option in generated code. For assertions to abort
execution you must enable them by including a parameter in the make_rtw

100

Version 5.0 (R13) Real-Time Workshop Toolbox

command. Specify the Make command field on the Target configuration
category pane as follows:

make_rtw OPTS='-DDOASSERTS'

If you want triggered assertions to not abort execution and instead to print
out the assertion statement, use the following make_rtw variant:

make_rtw OPTS='-DDOASSERTS -DPRINT_ASSERTS'

Finally, when running a model in accelerator mode, Simulink calls back to
itself to execute assertion blocks instead of using generated code. Thus a
user-defined callback is still called when assertions fail.

GUI Control Over TLC %assert Directive Evaluation
Prior versions required you to specify the -da Target Language Compiler
command switch for TLC %assert directives to be evaluated. Now you
can more conveniently trigger %assert code by selecting the Enable TLC
Assertions check box on the TLC debugging section of the Real-Time
Workshop dialog. The default state is for asserts not to be evaluated. You
can also control assertion handling from the MATLAB command window.
To set or unset assertion handling, use the following command. The option
os off by default.

set_param(model, 'TLCAssertion', 'on|off')

To see the current setting, use the command

get_param(model, 'TLCAssertion')

Code Generation Infrastructure Enhancements

• “Code for Nonvirtual Subsystems Is Now Reusable” on page 102

• “Packaging of Generated Code Files Simplified” on page 104

• “Most Targets Use rtModel Instead of Root SimStruct” on page 106

• “Hook Files Required for Communicating Target-specific Word
Characteristics” on page 108

101

Real-Time Workshop® Release Notes

• “Code Generation Unified for Real-Time Workshop and Stateflow” on page
109

• “Conditional Input Branch Execution Optimization” on page 109

Code for Nonvirtual Subsystems Is Now Reusable
Real-Time Workshop V5.0 (R13) introduces the ability to reuse code
generated for nonvirtual subsystems. In prior releases, Real-Time Workshop
generated a separate block of code for each nonvirtual subsystem. In some
circumstances—for example, when you use a library block multiple times in
the same fashion—it is now possible to generate a single shared function for
the block and call that function multiple times. Consolidating code in this
fashion can significantly improve the size and efficiency of generated code.

To implement code reuse, Real-Time Workshop must pass in appropriate
data elements (as function arguments) for each caller of a reused subsystem.
Code generated by Real-Time Workshop V5.0 (R13) enables such arguments
for functions generated for nonvirtual subsystems.

You enable code reuse through the Subsystem parameters dialog when both
Treat as atomic unit and Reusable function from the RTW system code
pull-down menu are selected, as illustrated below.

102

Version 5.0 (R13) Real-Time Workshop Toolbox

Reusable code will also be generated, when feasible, when you set RTW
system code to Auto. Then, if only one instance of the subsystem exists,
it will be inlined; otherwise a reusable function will be generated if other
characteristics of the model allow this.

Certain conditions may make it impossible to reuse code, causing Real-Time
Workshop to revert to another RTW system code option even though you
specify Reusable function or Auto. When you specify Reusable function
and reuse is not possible, the result is a function without arguments. When
you specify Auto and reuse is not possible, Real-Time Workshop inlines the
subsystem’s code (or in special cases, creates a function without arguments).
Diagnostics are available in the HTML code generation report (if enabled, see
"“Generate HTML Report Option Available for Additional Targets” on page
114) to help identify the reasons why reuse is not occurring in particular
instances. In addition to providing these exception diagnostics, the HTML
report’s Subsystems section also maps each noninlined subsystem in the
model to functions or reused functions in the generated code.

Requirements for Generating Reusable Code from Stateflow Charts.
To generate reusable code from a Stateflow chart, or from a subsystem
containing a Stateflow chart, all of the following conditions must be met:

103

Real-Time Workshop® Release Notes

• The chart (or subsystem containing the chart) must be a library block (see
“Working with Block Libraries” in the Simulink documentation).

• Data in the chart must not be initialized from workspace. The data
property Initialize from workspace should be off.

• The chart must not output a function call.

See “Nonvirtual Subsystem Code Generation” in the Real Time Workshop
documentation for more details.

Compatibility Considerations. Real-Time Workshop V5.0 (R13) alters
aspects of generated code to support code reuse for nonvirtual subsystems. As
explained above, you have the ability to select or override this feature, as well
as to specify function and file names from the graphical user interface.

Packaging of Generated Code Files Simplified
The packaging of generated code into.c and.h files has been simplied. The
following table summarizes the structure of source code generated by the
Real-Time Workshop. All code modules described are written to the build
directory.

Note The file packaging of the Real-Time Workshop Embedded Coder differs
slightly (but significantly) from the file packaging described here. See “Data
Structures and Code Modules” in the Real-Time Workshop Embedded Coder
User’s Guide for more information.

File Description

model.c Contains entry points for all
code implementing the model
algorithm (MdlStart, MdlOutputs,
MdlUpdate, MdlInitializeSizes,
MdlInitializeSampleTimes). Also contains
model registration code.

104

Version 5.0 (R13) Real-Time Workshop Toolbox

File Description

model_private.h Contains local defines and local data that
are required by the model and subsystems.
This file is included by subsystem.c
files in the model. You do not need to
include model_private.h when interfacing
handwritten code to a model.

model.h Defines model data structures and a public
interface to the model entry points and data
structures. Also provides an interface to the
real-time model data structure (model_rtM)
via access macros. model.h is included by
subsystem.c files in the model.
If you are interfacing your handwritten code
to generated code for one or more models,
you should include model.h for each model to
which you want to interface.

model_data.c
(conditional)

model_data.c is conditionally generated. It
contains the declarations for the parameters
data structure and the constant block I/O
data structure. If these data structures are
not used in the model, model_data.c is not
generated. Note that these structures are
declared extern in model.h.

model_types.h Provides forward declarations for the
real-time model data structure and the
parameters data structure. These may be
needed by function declarations of reusable
functions. model_types.h is included by all
subsystem.h files in the model.

105

Real-Time Workshop® Release Notes

File Description

rtmodel.h Contains #include directives required
by static main program modules such as
grt_main.c and grt_malloc_main.c. Since
these modules are not created at code
generation time, they include rt_model.h
to access model-specific data structures
and entry points. If you create your own
main program module, take care to include
rtmodel.h.

model_pt.c (optional) Provides data structures that enable a
running program to access model parameters
without use of external mode.

model_bio.c (optional) Provides data structures that enable your
code to access block outputs.

Compatibility Considerations. If you have interfaced handwritten code to
code generated by previous releases of the Real-Time Workshop, you might
need to remove dependencies on header files that are no longer generated.
Use #includemodel.h directives, and remove #include directives that refer
to any of the following:

Old Filename New Filenames

model_common.h model_types.h and model_private.h

model_export.h model.h

model_prm.h model_data.c

model_reg.h model.c

Most Targets Use rtModel Instead of Root SimStruct
The GRT, GRT-Malloc, ERT, and Tornado targets now use the rtModel data
structure to store information about the root model.

106

Version 5.0 (R13) Real-Time Workshop Toolbox

Compatibility Considerations. In prior releases, the information about the
root models was stored in the data structure SimStruct. Since the SimStruct
data structure was also used by noninlined S-functions, it contained a number
of S-function fields that were not needed to represent root model information.
The new rtModel structure is lightweight and eliminates the unused fields
in representing the root model. Fields in the rtModel capture model-wide
information pertaining to timing, solvers, logging, model data (such as block
I/O and DWork parameters), and so on. To generate code for the ERT target,
the rtModel data structure is further pruned to contain only those fields that
are relevant to the model under consideration.

If you have previously customized GRT, GRT-Malloc, or Tornado targets,
upgrade each customized target to use the rtModel instead of SimStruct.

To upgrade a target to use the rtModel instead of the SimStruct:

• Include rtmodel.h instead of simstruc.h at the top.

• Since the rtModel data structure has a type that includes the model name,
you need to include the following lines at the top of the file:

#define EXPAND_CONCAT(name1,name2) name1 ## name2

#define CONCAT(name1,name2) EXPAND_CONCAT(name1,name2)

#define RT_MODEL CONCAT(MODEL,_rtModel)

• Change the extern declaration for the function that creates and initializes
the SimStruct to be:

extern RT_MODEL *MODEL(void);

• Change the definitions of rt_CreateIntegrationData and
rt_UpdateContinuousStates to be as shown in the Release 13 version of
grt_main.c (or grt_malloc_main.c).

• Change all function prototypes to have the argument 'RT_MODEL' instead
of the argument 'SimStruct'.

• Change the names of the following functions such that they use the prefix
rt_Sim instead of rt_ and then change the arguments you pass into them.

rt_GetNextSampleHit
rt_UpdateDiscreteTaskSampleHits

107

Real-Time Workshop® Release Notes

rt_UpdateContinuousStates
rt_UpdateDiscreteEvents
rt_UpdateDiscreteTaskTime
rt_InitTimingEngine

See grt_main.c (or grt_malloc_main.c) for the list of arguments that
need to be passed into each function.

• Modify macros that refer to the SimStruct to now refer to the rtModel.
Examples of these modifications include changing

- ssGetErrorStatus to rtmGetErrorStatus

- ssGetSampleTime to rtmGetSampleTime

- ssGetSampleHitPtr to rtmGetSampleHitPtr

- ssGetStopRequested to rtmGetStopRequested

- ssGetTFinal to rtmGetTFinal

- ssGetT to rtmGetT

In addition to the changes to the main C files, change the target TLC file
and the template make files.

• In your template make file, define the symbol USE_RTMODEL. See one of the
GRT or GRT-Malloc template makefiles for an example.

• In your target TLC file, add the following global variable assignment:

%assign GenRTModel = TLC_TRUE

Hook Files Required for Communicating Target-specific Word
Characteristics
You must now supply a target hook file (M-file) to specify target hardware
characteristics, such as word sizes and overflow behavior.

108

Version 5.0 (R13) Real-Time Workshop Toolbox

Compatibility Considerations. To communicate details about target
hardware characteristics, you must now supply an M-file named
target_rtw_info_hook.m. Each system target file needs to implement
a hook file. For GRT (grt.tlc), for example, you must name the file
grt_rtw_info_hook.m, and the file needs to be on the MATLAB path. If the
hook file is not provided, Real-Time Workshop uses default values based on
the host’s characteristics, which may not be appropriate. For an example, see
toolbox/rtw/rtwdemos/example_rtw_info_hook.m. In addition, note that
the TLC directive %assign DSP = 1 no longer has any effect. You need to
provide a hook file instead.

Code Generation Unified for Real-Time Workshop and
Stateflow
Real-Time Workshop now generates code for models that include Stateflow
charts in a single set of output files.

Compatibility Considerations. In earlier releases, Real-Time Workshop
wrote code generated from Stateflow charts to source code files distinct from
the source code files (such as model.c, model.h, etc.) generated from the
rest of a model.

Now, by default, Stateflow no longer generates any separate files from
Real-Time Workshop. In addition, Stateflow generated code is seamlessly
integrated with other generated code. For example, all Stateflow initialization
code is now inlined.

You can override the default and instruct the Real-Time Workshop to generate
separate functions, within separate code files, for a Stateflow chart. To do
this, use the RTW system code options in the Block parameters dialog
of the Stateflow chart (see “Nonvirtual Subsystem Code Generation” in the
Real-Time Workshop documentation). You can control the names of the
functions and the code files generated.

Conditional Input Branch Execution Optimization
This release introduces an optimization called conditional input branch
execution, which speeds simulation and execution of code generated from
the model.

109

Real-Time Workshop® Release Notes

Compatibility Considerations. Previously, when simulating models
containing Switch or Multiport Switch blocks, Simulink executed all blocks
required to compute all inputs to each switch at each time step. In this
release, Simulink, by default, executes only the blocks required to compute
the control input and the data input selected by the control input at each
time step. Likewise, standalone applications generated from the model by
Real-Time Workshop execute only the code needed to compute the control
input and the selected data input. To explore this feature, see the demo
rtwdemo_condinput .

Block Enhancements

• “New Rate Transition Block” on page 110

• “S-Function API Extended to Permit Users to Define DWork Properties”
on page 111

• “Lookup Table Blocks Use New Run-Time Library for Smaller Code” on
page 111

• “Relay Block Now Supports Frame-Based Processing” on page 111

• “Transport Delay and Variable Transport Delay Improvements” on page 112

• “Storage Classes for Data Store Memory Blocks” on page 112

New Rate Transition Block
In previous releases, Zero-Order Hold and Unit Delay blocks were required to
handle problems of data integrity and deterministic data transfer between
blocks having different sample rates.

The new Rate Transition block lets you handle sample rate transitions in
multirate applications with greater ease and flexibility than the Zero-Order
Hold and Unit Delay blocks.

The Rate Transition block handles both types of rate transitions (fast to slow,
and slow to fast). When inserted between two blocks of differing sample rates,
the Rate Transition block detects the two rates and automatically configures
its input and output sample rates for the appropriate type of transition.

110

Version 5.0 (R13) Real-Time Workshop Toolbox

For more information on the use of the Rate Transition block with the
Real-Time Workshop, see “Sample Rate Transitions” in the Real-Time
Workshop documentation. For a detailed description of the new block, see
Rate Transition in the Simulink reference documentation.

S-Function API Extended to Permit Users to Define DWork
Properties
The S-Function API has been extended to permit specification of an Real-Time
Workshop identifier, storage class, and type qualifier for each DWork that an
S-Function creates. The extensions consist of the following macros:

ssGetDWorkRTWIdentifier(S,idx)
ssSetDWorkRTWIdentifier(S,idx,val)
ssGetDWorkRTWStorageClass(S,idx)
ssSetDWorkRTWStorageClass(S,idx,val)
ssGetDWorkRTWTypeQualifier(S,idx)
ssSetDWorkRTWTypeQualifier(S,idx,val)

As is the case with data store memory or discrete block states, the Real-Time
Workshop identifier may resolve against a Simulink.Signal object. An
example has been added to sfundemos, in the miscellaneous category.

Lookup Table Blocks Use New Run-Time Library for Smaller
Code
Lookup Table (2-D), Lookup Table (3-D), PreLook-Up Using Index Search, and
Interpolation using PreLook-Up blocks now generate code that targets one of
the many new specific, optimized lookup table operations in the Real-Time
Workshop runtime library. This results in dramatically smaller code size. The
library lookup functions themselves incorporate more enhancements to the
actual lookup algorithms for speed improvements for most option settings,
especially for linear interpolations.

Relay Block Now Supports Frame-Based Processing
Relay blocks can now handle frame-based input signals. Each row in a
frame-based input signal is a separate set of samples in frames and each
column represents a different signal channel. The block parameters should be
scalars or row vectors whose length is equal to the number of signal channels.
The block does not allow continuous frame-based input signals.

111

Real-Time Workshop® Release Notes

Transport Delay and Variable Transport Delay Improvements
Code generation for models containing the Transport Delay and Variable
Transport Delay is now require less space.

Storage Classes for Data Store Memory Blocks
You can now control how Data Store Memory blocks in your model are stored
and represented in the generated code, by assigning storage classes and type
qualifiers. You do this in almost exactly the same way you assign storage
classes and type qualifiers for block states. You can also associate a Data
Store Memory block with a signal object, and control code generation for the
block through the signal object.

See “Storage Classes for Data Store Memory Blocks” in the Real-Time
Workshop documentation for more information.

Rapid Simulation Target Enhancement
Executables generated for the Rapid Simulation (RSim) target are now able to
use any Simulink solver, including variable-step solvers. To use this feature,
the target system must be able to check out a Simulink license when running
the generated RSim executable.

For details, see “Licensing Protocols for Simulink Solvers in RSim
Executables”.

Compatibility Considerations
You can maintain backwards compatibility (that is, fixed-step solvers
only, with no need to check out a Simulink license) by selecting Use RTW
fixed step solver from the Solver Selection popup menu on the Rapid
Simulation code generation options dialog. The default solver option
is Auto, which will use the Simulink solver module only when the model
requires it.

112

Version 5.0 (R13) Real-Time Workshop Toolbox

External Mode Enhancements

• Support for Rapid Simulation (RSim) target

The RSim target now includes full support for all features of Simulink
external mode. External mode lets you use your Simulink block diagram
as a front end for a target program that runs on external hardware or in a
separate process on your host computer, and allows you to tune parameters
and view or log signals as the target program executes.

• Support for ERT target

The Real-Time Workshop Embedded Coder now includes full support for
all features of Simulink external mode. External mode lets you use your
Simulink block diagram as a front end for a target program that runs
on external hardware or in a separate process on your host computer,
and allows you to tune parameters and view or log signals as the target
program executes.

• Support for uploading signals of all storage classes

Signals from all storage classes, including custom, can now be uploaded in
external mode, as long as signals or parameters have addresses defined.
For example, data stored as bit fields or #defines cannot be uploaded, but
few other restrictions exist.

Simulink Data Object Enhancements
Simulink data objects include several new string properties that you can
exploit for customizing code generation. These properties are

Simulink.Data.Description
Simulink.Data.DocUnits
RTWInfo.Alias

In this release, the Simulink engine and Target Language Compiler do not
use these properties. The properties are included in the model.rtw file and
are reserved for future use. RTWInfo.Alias defines the identifier to be used in
place of the parent data object (parameter, signal, or state) in the code. The
engine checks that the alias is uniquely used by only that object.

113

Real-Time Workshop® Release Notes

model.rtw Changes
In this release, a number of changes have been made to model.rtw.

Compatibility Considerations
If your applications depend on parsing model.rtw files using customized TLC
scripts, read "model.rtw Changes Between Real-Time Workshop 5.0 and
4.1" in Appendix A of the Target Language Compiler documentation, which
describes the structure and contents of compiled models.

Generate HTML Report Option Available for
Additional Targets
In earlier releases, the Generate HTML report option was available only
for the Real-Time Workshop Embedded Coder. In the current release, the
report is available for all targets (except the S-Function target and Rapid
Simulation target).

The Generate HTML report option is located in the General code
generation options category of the Real-Time Workshop page of the
Simulation Parameters dialog box, as shown below.

114

Version 5.0 (R13) Real-Time Workshop Toolbox

The option is on by default. An abbreviated report is generated if you do not
have Real-Time Workshop Embedded Coder installed.

Efficiency of Code Generated for GRT and GRT-Malloc
Targets Improved
Substantial changes have been made to the GRT and GRT-Malloc targets to
improve the efficiency of generated code.

Compatibility Considerations
If you have customized either type of target, you should make changes to
your modified files to ensure that your target works properly with V5.0 (R13)
Real-Time Workshop.

You should begin with the versions of the target files included in this release,
and introduce all of your existing customizations to them. If you are unable to
follow this upgrade path, then perform all steps outlined in “Most Targets Use
rtModel Instead of Root SimStruct” on page 106 and “Logging Code Moved
to the Real-Time Workshop Library” on page 115.

Logging Code Moved to the Real-Time Workshop
Library
All the support functions used for logging data have been moved from
rtwlog.c to the Real-Time Workshop library.

Compatibility Considerations
If you have customized a GRT or GRT-Malloc Target, make the following
changes to ensure compatibility with the new logging functions:

• Remove rtwlog.c from all of your template make files.

• In your target’s main C file (which was derived from grt_main.c or
grt_malloc_main.c), include rt_logging.h instead of rtwlog.h.

• In your target’s main C file (which was derived from grt_main.c or
grt_malloc_main.c), you need to change the calls to the logging related
functions because the prototypes of these functions have changed. See

115

Real-Time Workshop® Release Notes

grt_main.c (or grt_malloc_main.c) for the list of arguments that needs
to be passed into each function.

Custom Code Blocks Moved from Simulink Library
The Custom Code blocks have been moved to a new library, named
custcode.mdl (type custcode to access them).

Compatibility Considerations
Because custom code blocks are linked to this new library, backward
compatibility is assured.

Target Language Compiler Changes

• SPRINTF built-in function added

A C-like sprintf formatting function has been added to the Target
Language Compiler, which returns a TLC string encoded with data from
a variable number of arguments.

$assign str = SPRINTF(format,var,...) formats the data in variable
var (and in any additional variable arguments) under control of the
specified format string, and returns a string variable containing the values.
The function operates like C library sprintf(), except that output is the
return value rather than contained in an argument to sprintf.

• BlockInstanceData function no longer available

• %filescope directive added

A new directive, %filescope, is now available for limiting scopes of
variables to the files in which they are defined. All variables defined after
the appearance of %filescope in a file have this property; otherwise, they
default to global variables.

• Global variables :: operator available

Use of the :: operator to access global variables is now allowed in TLC files.
Variables defined on the command line and records read from model.rtw
files remain global variables. Nested include files cannot access variables
local to the file that included them.

116

Version 5.0 (R13) Real-Time Workshop Toolbox

Compatibility Considerations
S-function TLC files should no longer use the BlockInstanceData function.
All data used by a block should be declared using data type work vectors
(DWork).

Documentation Enhancements

• The expression folding API is documented and available for you to
use, particularly for writing inlined S-functions. In addition, expanded
capabilities are available that support the TLC user control variable
(ucv) in %roll directives, and enable expression folding for blocks such as
Selector. See “Writing S-Functions That Support Expression Folding” in
the Real-Time Workshop documentation for details.

• The “Real-Time Workshop User’s Guide” has been significantly updated
and reorganized.

• Information pertaining to data structures and subsystems has been
updated and made more accessible.

• New features and GUI changes have been documented

• A new “Getting Started with Real-Time Workshop” is available. This
document explains basic Real-Time Workshop concepts, organizes tutorial
material for easier access, and cross-references more detailed explanations
in the User’s Guide.

• The Target Language Compiler documentation has been significantly
updated and reorganized. A revised collection of tutorial examples
provides new users with a more grounded introduction to TLC syntax.
Documentation on the TLC Function Library and contents of model.rtw
files has also been updated.

Fixed Bugs

• “ImportedExtern and ImportedExternPointer Storage Class Data No
Longer Initialized” on page 119

• “External Mode Properly Handles Systems with no Uploadable Blocks”
on page 119

117

Real-Time Workshop® Release Notes

• “Nondefault Ports Now Usable for External Mode on Tornado Platform”
on page 119

• “Initialize Block Outputs Even If No Block Output Has Storage Class Auto”
on page 119

• “Code Is Generated Without Errors for Single Precision Data Type Block
Outputs” on page 120

• “Duplicate #include Statements No Longer Generated” on page 120

• “Custom Storage Classes Ignored When Unlicensed for Embedded Coder ”
on page 120

• “Erroneous Sample Time Warning Messages No Longer Issued” on page 120

• “Discrete Integrator Block with Rolled Reset No Longer Errors Out” on
page 120

• “Rate Limiter Block Code Generation Limitation Removed” on page 121

• “Multiport Switch with Expression Folding Limitation Removed” on page
121

• “Pulse Generator Code Generation Failures Rectified” on page 121

• “Stateflow I/O with ImportedExternPointer Storage Class Now Handled
Correctly” on page 121

• “Parameters for S-Function Target Lookup Blocks May Now Be Made
Tunable” on page 121

• “PreLookup Index Search Block Now Handles Discontiguous Wide Input”
on page 122

• “SimViewingDevice Subsystem No Longer Fails to Generate Code” on page
122

• “Accelerator Now Works with GCC Compiler on UNIX” on page 122

• “Expression Folding Behavior for Action Subsystems Stabilized” on page
122

• “Dirty Flag No Longer Set During Code Generation” on page 122

• “Subsystem Filenames Now Completely Checked for Illegal Characters”
on page 122

118

Version 5.0 (R13) Real-Time Workshop Toolbox

• “Sine Wave and Pulse Generator Blocks No Longer Needlessly Use
Absolute Time” on page 123

• “Generated Code for Action Subsystems Now Correctly Guards Execution
of Fixed in Minor Time Step Blocks” on page 123

• “Report Error when Code Generation Requested for Models with Algebraic
Loops” on page 123

ImportedExtern and ImportedExternPointer Storage Class
Data No Longer Initialized
Real-Time Workshop now reverts to its previous behavior of not initializing
data whose storage class is ImportedExtern or ImportedExternPointer.
Such initialization is the external code’s responsibility.

External Mode Properly Handles Systems with no Uploadable
Blocks
Connecting to systems with no blocks that can be uploaded in external mode
used to fail and cause Simulink to act as though a simulation was running
when none was. The only way to exit the model was to exot MATLAB.
Connecting to these systems now will display a warning in the MATLAB
command window and then run normally.

Nondefault Ports Now Usable for External Mode on Tornado
Platform
In the prior release, a bug prevented the use of any but the default port to
connect to a Tornado (VxWorks) target via external mode. The problem has
been fixed and that configuration now works as documented.

Initialize Block Outputs Even If No Block Output Has Storage
Class Auto
Previously, block outputs were initialized only if at least one block output had
storage class auto. Now even if there are no auto Block I/O entries, exported
globals and custom signals are initialized.

119

Real-Time Workshop® Release Notes

Code Is Generated Without Errors for Single Precision Data
Type Block Outputs
In cases where a reused block outputs entry is the first single-precision data
type block output in the full list of block outputs in the model, Real-Time
Workshop now operates without reporting errors. See the Simulink Release
Notes for related single-precision block enhancements.

Duplicate #include Statements No Longer Generated
Real-Time Workshop now creates a unique list of C header files before
emitting #include statements in the model.h file (formerly placed in
model_common.h). For backwards compatibility, the old text buffering method
for includes is still available for use, but can cause multiple includes in the
generated code. You should update your custom code formats to use the
(S)LibAddToCommonIncludes() functions instead of LibCacheIncludes(),
which has been deprecated.

Custom Storage Classes Ignored When Unlicensed for
Embedded Coder
If a user loads a model that uses custom storage classes, and the user is not
licensed for Embedded Coder, the custom storage class is ignored (storage
class reverts to auto) and a warning is produced. Previously, this situation
would have generated an error.

Erroneous Sample Time Warning Messages No Longer Issued
Erroneous warnings regarding sample times not being in the sample time
table for models that contain a variable sample time block and a fixed step
solver are no longer issued during model compilation.

Discrete Integrator Block with Rolled Reset No Longer Errors
Out
Simulink Accelerator and Real-Time Workshop used to error out if they had a
Discrete Integrator block configured in 'ForwardEuler', non-level external
reset, and the reset signal was a 'rolled' signal (having a width greater
than 5). This has been fixed.

120

Version 5.0 (R13) Real-Time Workshop Toolbox

Rate Limiter Block Code Generation Limitation Removed
Simulink Accelerator now generates code for variable-step solver models that
contain a rate limiter block inside an atomic subsystem.

Multiport Switch with Expression Folding Limitation Removed
Simulink Accelerator and Real-Time Workshop no longer generate a Fatal
Error for Multiport Switch when expression folding is enabled.

Pulse Generator Code Generation Failures Rectified
Several problems with code generation for the pulse generator block have
been eliminated:

• If the block type is PulseGenerator instead of Discrete PulseGenerator,
code can now be generated.

• The scalar expansion for the delay variable is now correct.

• The start function for the Time-based mode in a variable-step solver now
can generate code.

The first two problems also affected the Simulink Accelerator.

Stateflow I/O with ImportedExternPointer Storage Class Now
Handled Correctly
Stateflow input pointers for signals of ImportedExternPointer storage class
are now correctly initialized, and no longer error out for charts producing
output signals that are nonscalar and of ImportedExternPointer storage
class.

Parameters for S-Function Target Lookup Blocks May Now
Be Made Tunable
The S-Function target code will now compile for models having lookup and
Lookup Table (2-D) blocks when parameters for those blocks are tunable.

121

Real-Time Workshop® Release Notes

PreLookup Index Search Block Now Handles Discontiguous
Wide Input
The PreLookup Index Search block formerly only generated code for signals
from the first roll region of discontiguous wide inputs, such as from a Max
block. This has been fixed.

SimViewingDevice Subsystem No Longer Fails to Generate
Code
Code generation no longer aborts for atomic subsystems configured with
SimViewingDevice=on.

Accelerator Now Works with GCC Compiler on UNIX
The previous version of the Accelerator did not work when the user selected
the gcc compiler with mex -setup. The Accelerator now supports using the
gcc compiler on UNIX systems.

Expression Folding Behavior for Action Subsystems Stabilized
When a model contains an action subsystem (that is, a for loop or while
iterator subsystem) and expression folding is enabled, invalid or inefficient
code sometimes was generated for the model. This problem has been fixed.

Dirty Flag No Longer Set During Code Generation
In previous releases, a model would be marked as dirty during the code
generation process and the status would be restored when the process was
finished. With this release the model’s dirty status does not change during
code generation.

Subsystem Filenames Now Completely Checked for Illegal
Characters
In previous releases, it was possible to specify a subsystem filename that
contained illegal (non-alphanumeric) characters, if the name was long enough
and the invalid characters were toward the end of the string. In this release
this bug has been fixed, and the entire character string is now validated.

122

Version 5.0 (R13) Real-Time Workshop Toolbox

Sine Wave and Pulse Generator Blocks No Longer Needlessly
Use Absolute Time
Previously, code generated for the Sine Wave and Pulse Generator blocks
accessed absolute time when the blocks were configured as sample based.
This access is not necessary and its overhead has been removed from the
generated code.

Generated Code for Action Subsystems Now Correctly Guards
Execution of Fixed in Minor Time Step Blocks
All blocks contained in an action subsystem must have the same rate unless
some are continuous and some are fixed in minor step (a.k.a. zoh continuous).
If there are both continuous and fixed in minor step blocks then the generated
code needs to guard the code for the fixed in minor time step blocks to protect
it from being executed in minor time steps.

These guards were not being generated causing some models to have wrong
answers and consistency failures. This problem has been fixed and the guards
are now generated.

This is also a fix for the Simulink Accelerator.

Report Error when Code Generation Requested for Models
with Algebraic Loops
Real-Time Workshop does not support models containing algebraic loops.
V4.1 (R12.1) contained a bug that enabled some models having algebraic
loops to generate code which could compute incorrect answers. The models
affected were those containing no algebraic loops in their root level but having
algebraic loops in one or more subsystems. This bug has been fixed, and now
building these models will always cause an error to be reported.

Limitations for HP and IBM Platforms
The V4.0 (R12) platform limitation for Real-Time Workshop for the HP and
IBM platforms still applies to V5.0 (R13). On the HP and IBM platforms, the
Real-Time Workshop opens the V3.0 (R11) Tunable Parameters dialog box
in place of the Model Parameter Configuration dialog box. Although they
differ in appearance, both dialogs present the same information and support
the same functionality.

123

Real-Time Workshop® Release Notes

Version 4.1 (R12.1) Real-Time Workshop
This table summarizes what’s new in V4.1 (R12.1):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

Fixed bugs No

New features and changes introduced in this version are

• “Block Reduction Option On by Default” on page 125

• “Buffer Reuse Code Generation Option” on page 125

• “Build Directory Validation” on page 126

• “Build Subsystem Enhancements” on page 126

• “C API for Parameter Tuning Documented” on page 127

• “Code Readability Improvements” on page 127

• “Support for Control Flow Blocks” on page 127

• “Expression Folding” on page 127

• “External Mode Enhancements” on page 128

• “Generate Comments Option” on page 129

• “Include System Hierarchy in Identifiers Option” on page 129

• “Rapid Simulation Target Support for Inline Parameters” on page 129

• “S-Function Target Enhancements” on page 129

• “Storage Classes for Block States” on page 130

• “Support for tilde (~) in Filenames on UNIX Platforms” on page 130

• “Target Language Compiler Enhancements” on page 130

124

Version 4.1 (R12.1) Real-Time Workshop

• “RTWInfo Property Changed” on page 132

• “Fixed Bugs” on page 133

Note For information about closely related products that extend the
Real-Time Workshop, see the Release Notes for those products.

Block Reduction Option On by Default
The Block reduction option on the Advanced pane of the Simulation
Parameters dialog box is now turned on by default.

Block reduction collapses certain groups of blocks into a single, more
efficient block, or removes them entirely. This results in faster model
execution during simulation and in generated code.

See “Block Reduction Optimization” in the Real-Time Workshop
documentation for more information.

Compatibility Considerations
In previous releases, the Block reduction option on the Advanced pane of
the Simulation Parameters dialog box was off by default. This option is now
on by default.

Buffer Reuse Code Generation Option
A Buffer reuse option has been added to the Real-Time Workshop pane of
the Simulation Parameters dialog box. When you select this option, Real-Time
Workshop reuses signal storage whenever possible.

See “Reuse Block Outputs” in the Real-Time Workshop documentation for
more information.

Compatibility Considerations
In previous releases, the buffer reuse option was available only through
MATLAB set_param and get_param commands, such as:

set_param(gcs,'bufferreuse','on')

125

Real-Time Workshop® Release Notes

The ability to set and get this option with the set_param and get_param
commands is still supported.

For a description of bufferreuse, see “Configuration Parameter Reference”.

Build Directory Validation
The build process now disallows building programs in the MATLAB directory
tree.

Compatibility Consideration
Prior to this release, Real-Time Workshop allowed you to build programs
in the MATLAB directory tree. As of V4.1 (Release 12.1), this is no longer
allowed. If you attempt to generate code in the MATLAB directory tree,
Real-Time Workshop displays an error message, prompting you to change to a
working directory that is not in the MATLAB directory tree. On a PC, you can
continue to build in the directory matlabroot/Work.

The build process also prevents building programs when matlabroot has a
dollar sign ($) in its MATLAB directory name.

Build Subsystem Enhancements
The Build Subsystem feature, introduced in Real-Time Workshop V4.0
(R12), lets you generate code and build an executable from any nonvirtual
subsystem within a model. In Real-Time Workshop V4.1 (R12.1), the Build
Subsystem feature has been enhanced as follows:

• The Build Subsystem window now displays additional information about
block parameters referenced by the subsystem.

• From the Build Subsystem window, you can now inline or set the storage
class of any parameter.

See “Generating Code and Executables from Subsystems” in the Real-Time
Workshop Documentation for more information.

126

Version 4.1 (R12.1) Real-Time Workshop

C API for Parameter Tuning Documented
Real-Time Workshop provides data structures and a C API that enable a
running program to access model parameters without use of external mode.

To access model parameters via the C API, you generate a model-specific
parameter mapping file, model_pt.c. This file contains parameter mapping
arrays that contain information required for parameter tuning.

See “C-API for Parameter Tuning and Signal Monitoring” in the Real-Time
Workshop documentation for information on how to generate and use the
parameter mapping file.

Code Readability Improvements
Improvements to the readability of generated code include:

• Elimination of redundant parentheses.

• Long C statements in the generated code are now split across multiple lines.

• Block comments are more informative.

Support for Control Flow Blocks
Simulink V4.1 (R12.1) implements a number of blocks that support logic
constructs such as if-else and switch, and looping constructs such as do-while,
for, and while. Real-Time Workshop V4.1 (R12.1) introduces code generation
support for these blocks.

For more information on the control flow blocks, see “Modeling Control Flow
Logic” in the Simulink documentation.

Expression Folding
Expression folding is a code optimization technique that minimizes the
computation of intermediate results at block outputs, and the storage of such
results in temporary buffers or variables. Wherever possible, the Real-Time
Workshop collapses, or "folds," block computations into single expressions,
instead of generating separate code statements and storage declarations for
each block in the model.

127

Real-Time Workshop® Release Notes

Expression folding dramatically improves the efficiency of generated code,
frequently achieving results that compare favorably to hand-optimized code.
In many cases, model computations fold into a single highly optimized line
of code.

Most Simulink blocks support expression folding.

For more information, see “Expression Folding” in the Real-Time Workshop
documentation.

External Mode Enhancements

• Support for inline parameters

Real-Time Workshop now lets you use the Inline parameters code
generation option when building an external mode target program. When
you inline parameters, you can use the Model Parameter Configuration
dialog box to remove individual parameters from inlining and declare them
to be tunable. This allows you to improve overall efficiency by inlining most
parameters, while at the same time retaining the flexibility of runtime
tuning for selected parameters that are important to your application. In
addition, the Model Parameter Configuration dialog box offers you
options for controlling how parameters are represented in the generated
code.

Each time Simulink connects to a target program that was generated with
Inline parameters on, the target program uploads the current value of its
tunable parameters (if any) to the host. These values are assigned to the
corresponding MATLAB workspace variables. This procedure ensures that
the host and target are synchronized with respect to parameter values.

All targets that support external mode (that is, grt, grt_malloc, and
Tornado) now allow inline parameters.

See “External Mode Communications Overview” in the Real-Time
Workshop documentation for more information.

• New status bar display

When Simulink is connected to a running external mode target program,
the simulation time and other status bar information is now displayed and
updated just as it would be in normal mode.

128

Version 4.1 (R12.1) Real-Time Workshop

Generate Comments Option
A new Comments option has been added to the Real-Time Workshop pane
of the Simulation Parameters dialog box. This option lets you control whether
or not comments are written in the generated code. See “Comments Options”
in the Real-Time Workshop documentation for more information.

Include System Hierarchy in Identifiers Option
A new Include system hierarchy in identifiers option has been added
to the Real-Time Workshop pane of the Simulation Parameters dialog
box. When you select this option , Real-Time Workshop inserts system
identification tags in the generated code (in addition to tags included in
comments). The tags help you to identify the nesting level, within your source
model, of the block that generated a given line of code.

See “How Symbols Are Formatted in Generated Code” in the Real-Time
Workshop documentation for more information.

Rapid Simulation Target Support for Inline
Parameters
The Rapid Simulation (RSim) Target now works with Inline parameters on.
Note that when Inline parameters is on, the storage class for all parameters
and signals is silently forced to auto.

S-Function Target Enhancements
The S-Function Target Generate S-function feature, introduced in
Real-Time Workshop V4.0 (R12), lets you generate an S-function from a
subsystem. This feature has been enhanced as follows:

• The Generate S-function window now displays additional information
about block parameters referenced by the generating subsystem.

• If you have installed and licensed the Real-Time Workshop Embedded
Coder, the Generate S-function window lets you invoke the Embedded
Coder to generate an S-function wrapper.

See “Automated S-Function Generation” in the Real-Time Workshop
documentation for details.

129

Real-Time Workshop® Release Notes

Storage Classes for Block States
For certain block types, Real-Time Workshop lets you control how block states
in your model are stored and represented in the generated code. Using the
State Properties dialog, you can:

• Control whether or not states declared in generated code are interfaceable
(visible) to externally written code. You can also specify that signals are to
be stored in locations declared by externally written code.

• Assign symbolic names to block states in generated code.

For more information, see “Block States: Storing and Interfacing” in the
Real-Time Workshop documentation.

Support for tilde (~) in Filenames on UNIX Platforms
All filename fields in Simulink now support the mapping of the tilde (~)
character in filenames. For example, in a To File block you can specify
<code>~/outdir/file.mat</code>. On most systems, this expands to
/home/$USER/outdir/file.mat. The Real-Time Workshop uses the expanded
names.

Target Language Compiler Enhancements
This section summarizes Target Language Compiler enhancements.

• New TLC debugger added

The TLC debugger helps you identify programming errors in your TLC code.
You can set breakpoints in your TLC code, execute TLC code line-by-line,
examine and change variables, and perform many other useful operations.

The TLC debugger operates during code generation, incurring almost no
overhead in the code generation process. You can invoke the debugger:

- By selecting options in the TLC debugging options category of the
Real-Time Workshop pane.

- By including %breakpoint statements in your TLC file.

- By using the MATLAB tlc command, as in

tlc -dc <options>

130

Version 4.1 (R12.1) Real-Time Workshop

- By using the -dc build option in the System target file field of the
Real-Time Workshop pane.

For more information, see “Debugging TLC Files” in the Target Language
Compiler documentation.

• model.rtw file format changed

The format of the model.rtw file has changed.

• Block I/O connection handling cleaned up

The handling of signal connections in rtw/c/tlc/blkiolib.tlc and
rtw/ada/tlc/blkiolib.tlc has been reworked. See the description of
LibBlockInputSignal in the Target Language Compiler documentation
for details.

• Support for literal string added

If a string constant is preceded by an L format specifier (as in L"string"),
the Target Language Compiler performs no escape character processing
on that string. This is useful for specifying PC-style paths without using
double back slash characters.

%addincludepath L"C:\mytlc"

The following examples are equivalent.

- L"d:\this\is\a\path"

- "d:\\this\\is\\a\\path"

• Library functions added

The following functions have been added to the TLC Function Library:

LibBlockInputSignalConnected
LibBlockInputSignalLocalSampleTimeIndex
LibBlockInputSignalOffsetTime
LibBlockInputSignalSampleTime
LibBlockInputSignalSampleTimeIndex
LibBlockOutputSignalOffsetTime
LibBlockOutputSignalSampleTime
LibBlockOutputSignalSampleTimeIndex
LibBlockMatrixParameterBaseAddr

131

Real-Time Workshop® Release Notes

LibBlockParameterBaseAddr
LibBlockNonSampledZC

See the Target Language Compiler documentation for information on
these functions.

Compatibility Considerations

• model.rtw file format has changed. For more information, see the Target
Language Compiler documentation.

• BlockTypeSetup and BlockInstanceSetup calls have been reorded.
During the initialization phase of code generation, the Target Language
Compiler makes a pass over all blocks in the model and executes several
functions, including:

- Each block’s BlockTypeSetup function the first time that block type
is encountered.

- Each block’s BlockInstanceSetup function. BlockInstanceSetup is
called for all instances of a given block type in the model.

The order in which these calls are made is significant, because the
BlockInstanceSetup function may depend upon global variables that are
initialized by the BlockTypeSetup function.

In V4.1 (R12) , the BlockTypeSetup function is called before the
BlockInstanceSetup. This corrects a problem in previous releases,
where BlockInstanceSetup was erroneously called first. You may need
to change your S-functions or block implementations if they depend upon
the previous behavior.

RTWInfo Property Changed
Changes have been made to the RTWInfo property of Simulink.Signal and
Simulink.Parameter data objects.

Compatibility Considerations
In V4.0 (R12), the RTWInfo class had a TypeQualifier property, corresponding
to the RTW storage type qualifier field of signal ports and parameters.

132

Version 4.1 (R12.1) Real-Time Workshop

Real-Time Workshop V4.1 (R12.1) now supports creation of custom storage
classes, removing the need for the TypeQualifier property. You should use
custom storage classes when type qualification is needed.

By default, the TypeQualifier property of RTWInfo objects is no longer visible
in the Simulink Data Explorer. Also, the TypeQualifier property is no longer
written to ObjectProperties records in the model.rtw file. For backward
compatibility, the TypeQualifier property remains active. You can set and
retrieve the property through a direct reference. For example,

Kp.RTWInfo.TypeQualifier = 'const'

or

tq = Kp.RTWInfo.TypeQualifier

You can make the TypeQualifier property visible in the Simulink Data
Explorer for the duration of a MATLAB session. To do this, execute the
following command prior to opening the Simulink Data Explorer,

feature('RTWInfoTypeQualifier',1)

The above command also directs the Real-Time Workshop to include the
TypeQualifier property in ObjectProperties records in the model.rtw file.

For more information see “Simulink Data Objects and Code Generation” in
the Real-Time Workshop documentation.

Fixed Bugs
Real-Time Workshop V4.1 (R12) includes the following bug fixes.

Block Reduction Crash Fixed
A problem that crashed MATLAB due to a segmentation fault during the
block reduction process has been fixed. This problem occurred only if the
Block Reduction option was on, and if a Scope block was connected to a
block that was removed due to block reduction.

133

Real-Time Workshop® Release Notes

Build Subsystem Gives Better Error Message for Function Call
Subsystems
The Build Subsystem feature does not currently support triggered
function-call subsystems. Real-Time Workshop now gives a more informative
error message when a Build Subsystem is attempted with a triggered
function-call subsystem.

Check Consistency of Parameter Storage Class and Type
Qualifier
Real-Time Workshop now checks for consistency of parameter storage class
and type qualifier when a parameter is specified by both the Model Parameter
Configuration dialog and a referenced Simulink data object.

Code Optimization for Unsigned Saturation and DeadZone
Blocks
When the lower limit of a Saturation or DeadZone block is a zero and is
nontunable, and the data type is unsigned, the comparison against the lower
limit is omitted from the code. Similarly, if the upper or lower limit of the
Saturation block is nontunable and nonfinite, the comparison against the
infinite limit is omitted.

Correct Code Generation of Fixed-Point Blockset Blocks in DSP
Blockset Models
A code generation bug involving some DSP Blockset blocks (see list below)
was fixed. When these blocks were driven by a block from the Fixed-Point
Blockset, generated code would write outside array memory bounds. The
following DSP Blockset blocks generated incorrect code:

Delay Line
Frame Status Conversion
Matrix Multiply
Multiport Selector
Pad
Submatrix
Window Function
Zero Pad

134

Version 4.1 (R12.1) Real-Time Workshop

Correct Compilation with Green Hills and DDI Compilers
Compilation errors for files associated with matrix inversion in the
matlabroot/rtw/c/libsrc directory were fixed. These errors occurred with
the Green Hills and DDI compilers.

Fixed Build Error with Models Having Names Identical to
Windows NT Commands
This fix prevents an error that occurred when building models having names
identical to Windows NT internal commands. Examples would be models
named verify or path. Such model names are now allowed.

Fixed Error Copying Custom Code Blocks
An error in the Custom Code block Copyfcn callback was fixed. The problem
caused an error when copying a custom code block within a model.

Fixed Error in commonmaplib.tlc
A typo in rev 1.17 of commonmap.tlc was fixed. This typo caused an error
during code generation, when using the grt_malloc target with External
mode selected.

Fixed Name Clashes with Run-Time Library Functions
Real-Time Workshop now uses the macros rt_min and rt_max to avoid
clashing with run-time library min and max functions.

Improved Handling of Sample Times
The sample time handling for the S-function and ERT targets has been
improved to use the compiled sample time instead of the user specified sample
time on the input port blocks.

Look-Up Table (n-D) Code Generation Bug Fix
Real-Time Workshop now generates correct code for Look-Up Table (n-D)
blocks having 5 or more dimensions with different dimension sizes.

135

Real-Time Workshop® Release Notes

Parenthesize Negative Numerics in Fcn Block Expressions
Fcn block expressions in the generated code failed to compile in the case of a
unary operator preceding a workspace variable with a negative value, such
as the expression

-v*u

Such expressions are now enclosed in parentheses, as in

(-v) * u

Unnecessary Warnings and Declarations Removed from
Generated Code
Several unnecessary warnings and declarations in the generated code have
been removed. These include:

• In functions where the tid argument is not referenced, the declaration

(void)tid

is no longer generated. (The tid argument is required because the function
API is predefined.)

• Warnings involving const casts were suppressed in some of the
rtw/c/libsrc modules.

Retain .rtw File Option Now Works in Accelerator Mode
In previous releases, the Retain .rtw file option (on the TLC Debugging
Options page of the Simulation Parameters dialog) was ignored if Simulink
was in Accelerator mode. Now, you can retain the model.rtw file during a
build, regardless of the simulation mode.

S-Function Target Memory Allocation Bug Fix
A segmentation fault during generation of S-functions was removed by fixing
the memory management of the port data structure.

136

Version 4.1 (R12.1) Real-Time Workshop

TLC Bug Fixes

• Fixed a bug where local variables of calling functions were sometimes
incorrectly visible to called functions.

• The ISINF, ISNAN, and ISFINITE functions now work for complex values.

• The %filescope directive now works as documented.

• Zero indexing on complex numbers is now supported.

In prior releases, the Target Language Compiler allowed 0 indexing for
integer and real values, but not for complex values. This restriction has
been removed in the Target Language Compiler 4.1, as shown in the
following example.

%assign a = 1.0 + 3.0i
%assign b = a[0] %% zero index now allowed

• Fixed a crash that occurred if ROLL_ITERATIONS was called outside of a
%roll construct. ROLL_ITERATIONS returns NULL if called outside of a
%roll construct.

• TLC now allows use of any path separator character independent of
operating system. You can use either \ or / as a path separator character
on Unix or Windows).

• Fixed a bug in the compare for equality operation. 0.0 now compares equal
to -0.0.

137

Real-Time Workshop® Release Notes

Version 4.0 (R12) Real-Time Workshop
This table summarizes what’s new in V4.0 (R12):

New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Related
Documentation at
Web Site

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations,
below. See also
Summary.

No bug fixes No

New features and changes introduced in this version are

• “Real-Time Workshop Embedded Coder” on page 139

• “Support for Simulink Data Objects” on page 139

• “Support for ASAP2 Data Files” on page 139

• “Enhanced Real-Time Workshop Configuration Pane” on page 140

• “Other User Interface Enhancements” on page 140

• “Support for New Simulink Advanced Options Pane” on page 140

• “Model Parameter Configuration Dialog Box” on page 141

• “Support for Tunable Expressions” on page 141

• “S-Function Target Enhancements” on page 141

• “External Mode Enhancements” on page 142

• “Build Directory” on page 143

• “Code Optimization Features” on page 144

• “Subsystem Code Generation” on page 145

• “Nonvirtual Subsystem Code Generation” on page 145

• “Standard Filename Extensions for Generated Files” on page 145

• “hilite_system and Code Tracing” on page 146

• “Generation of Parameter Comments” on page 147

138

Version 4.0 (R12) Real-Time Workshop

• “Borland 5.4 Compiler Support” on page 147

• “Enhanced Makefile Include Path Rules” on page 147

• “Column-Major Matrix Ordering” on page 147

• “S-Function Target MEX-Files Must Be Rebuilt” on page 148

• “Target Language Compiler Enhancements” on page 148

Real-Time Workshop Embedded Coder
The Real-Time Workshop Embedded Coder is a new add-on product that
replaces and enhances the Embedded Real-Time (ERT) target.

See the Real-Time Workshop Embedded Coder documentation for details.

Compatibility Considerations
The Real-Time Workshop Embedded Coder is 100% compatible with the ERT
target. In addition to supporting all previous functions of the ERT target, the
Real-Time Workshop Embedded Coder includes many enhancements.

Support for Simulink Data Objects
The Real-Time Workshop supports Simulink data objects. Simulink provides
the built-in Simulink.Parameter and Simulink.Signal classes for use with
the Real-Time Workshop. Using these classes, you can create parameter
and signal objects and assign storage classes and storage type qualifiers to
the objects. These properties control how the generated code represents
signals and parameters. You can extend the Simulink.Parameter and
Simulink.Signal classes to include user-defined properties.

See “Simulink Data Objects and Code Generation” in the Real-Time Workshop
documentation for details.

Support for ASAP2 Data Files
ASAP2 is a data definition standard proposed by the Association for
Standardization of Automation and Measuring Systems (ASAM). This
standard is used for data measurement, calibration, and diagnostic systems.

139

Real-Time Workshop® Release Notes

The Real-Time Workshop now lets you export an ASAP2 file containing
information about your model during the code generation process. See
“Generating ASAP2 Files” in the Real-Time Workshop documentation for
details.

Enhanced Real-Time Workshop Configuration Pane
The Real-Time Workshop pane of the Simulation Parameters dialog box
has been reorganized and made easier to use. See “Configuring Real-Time
Workshop Code Generation Parameters” in the Real-Time Workshop
documentation for details.

Other User Interface Enhancements

• The Tools menu of the Simulink model window contains a new Real-Time
Workshop submenu with shortcuts to frequently used features.

• You can now select a target configuration from the System Target File
Browser by double-clicking on the desired entry in the target list.

See the Real-Time Workshop documentation for details.

Compatibility Considerations
The double-click mechanism for selecting a target configuration from the
System Target File Browser does not replace the previous selection method.
You can still select a target entry and then click OK.

Support for New Simulink Advanced Options Pane
An Advanced pane options pane has been added to the Simulation
Parameters dialog box. The Advanced pane contains

• New code generation options

• Options formerly located in the Diagnostics pane

• Options formerly located in the Real-Time Workshop pane

140

Version 4.0 (R12) Real-Time Workshop

Compatibility Considerations
Simulation Parameters dialog box options formerly located in the Diagnostics
and Real-Time Workshop panes have been relocated to the new Advanced
pane.

Model Parameter Configuration Dialog Box
The Model Parameter Configuration dialog box extends and replaces the
Tunable Parameters dialog box. The Model Parameter Configuration
dialog box enables you to

• Declare individual parameters to be tunable

• Control the generated storage declarations for each parameter

See “Parameters: Storage, Interfacing, and Tuning” in the Real-Time
Workshop documentation for details.

Compatibility Considerations
You must now use the Model Parameter Configuration dialog box instead
of the Tunable Parameters dialog box to declare tunable parameters.

Support for Tunable Expressions
A tunable expression is an expression that contains one or more tunable
parameters. Tunable expressions are now supported during simulation and in
generated code.

Tunable expressions are allowed in masked subsystems. You can use tunable
parameter names or tunable expressions in a masked subsystem dialog box.
When referenced in lower-level subsystems, such parameters remain tunable.

See “Tunable Expressions” in the Real-Time Workshop documentation for a
detailed discussion on using tunable parameters in expressions.

S-Function Target Enhancements
S-function target enhancements include:

141

Real-Time Workshop® Release Notes

• Support for variable-step solvers

• Supports for tunable parameters

• New Generate S-function menu option on the Simulink Tools menu that
lets you automatically generate an S-function from a subsystem

The S-function target is now documented in “The S-Function Target” in the
Real-Time Workshop documentation.

External Mode Enhancements
New features have been added to external mode:

• Signal Viewing Subsystems have been implemented to let you encapsulate
processing and viewing of signals received from the target system. Signal
Viewing Subsystems run only on the host, generating no code in the target
system. This is useful in situations where you want to process or condition
signals before viewing or logging them, but you do not want to perform
these tasks on the target system. See “Signal Viewing Subsystems” in the
Real-Time Workshop documentation for details.

• The external mode communications application program interface (API) is
now documented. If you want to implement external mode communications
via your own low-level protocol, see “Creating an External Mode
Communication Channel” in the Real-Time Workshop documentation.

• The External Signal & Triggering dialog box has been enhanced as
indicated in the compatibility considerations listed below.

• As indicated in the compatibility considerations listed below, several
additional features now support external mode.

Compatibility Considerations
Previously, you could use only Scope blocks in external mode to receive and
view signals uploaded from the target program. The following features now
support external mode:

• The default operation of the External Signal & Triggering dialog box
has been changed to make monitoring a target program simpler. See
“External Signal Uploading and Triggering” in the Real-Time Workshop
documentation for details.

142

Version 4.0 (R12) Real-Time Workshop

• Previously, you could use only Scope blocks to receive and view signals
uploaded from a target program. The following features now support
external mode

- Dials & Gauges Blockset

- Display blocks

- To Workspace blocks

- Signal Viewing Subsystems

- S-functions

See “External Mode Compatible Blocks and Subsystems” in the
Real-Time Workshop documentation for details.

Build Directory
The Real-Time Workshop now creates a build directory within your working
directory. The build directory stores generated source code and other files
created during the build process. Real-Time Workshop derives the build
directory name, model_target_rtw, from the name of the source model and
the chosen target.

See “Directories Used During the Build Process” in the Real-Time Workshop
documentation for details.

Compatibility Considerations
If you have created custom targets for the Real-Time Workshop under Release
11, you must update your custom system target files and template makefiles
to create and utilize the build directory. See matlabroot/rtw/c/grt for
examples.

To update a Release 11 target:

1 Add the following to your system target file.

/%
BEGIN_RTW_OPTIONS
.
.
.

143

Real-Time Workshop® Release Notes

rtwgensettings.BuildDirSuffix = '_grt_rtw';
END_RTW_OPTIONS
%/

2 Add ".." to the INCLUDES rule in your template makefile. The following
example is from grt_lcc.tmf.

INCLUDES = -I. -I.. $(MATLAB_INCLUDES) $(USER_INCLUDES)

The first -I. gets files from the build directory, and the second -I.. gets
files (e.g., user written S-functions) from the current working directory.

Conceptually, think of the current directory and the build directory as the
same (as it was in Release 11). The current working directory contains
items like user written S-functions. The reason ".." must be added to the
INCLUDES rule is that make is invoked in the build directory (i.e., the
current directory was temporarily moved).

3 Place the generated executable in your current working directory. The
following example is from grt_lcc.tmf.

PROGRAM = ../$(MODEL).exe
$(PROGRAM) : $(OBJS) $(RTWLIB)
$(LD) $(LDFLAGS) -o $@ $(LINK_OBJS) $(RTWLIB) $(LIBS)

Code Optimization Features
This section describes new or modified code generation options that are
designed to help you optimize your generated code. The options described are
located on the Advanced pane of the Simulation Parameters dialog box.

• Block reduction: When selected, Simulink collapses certain groups of
blocks into a single, more efficient block, or removes them entirely. This
results in faster model execution during simulation and in generated code.

• Parameter pooling: When selected, Simulink optimizes memory usage
when multiple block parameters refer to storage locations that are
separately defined but structurally identical.

• Signal storage reuse: Replaces the (Enable/Disable) Optimized block
I/O storage option. See the compatibility considerations below for details.

144

Version 4.0 (R12) Real-Time Workshop

See “Optimizing a Model for Code Generation” in the Real-Time Workshop
documentation for more information on code optimization.

Compatibility Considerations
The Signal storage reuse option replaces the (Enable/Disable) Optimized
block I/O storage option of previous releases. Signal storage reuse is
functionally identical to the older option. Turning Signal storage reuse on
is equivalent to enabling Optimized block I/O storage.

Subsystem Code Generation
The Real-Time Workshop now generates code and builds an executable from
any subsystem within a model. The build process uses the code generation and
build parameters of the root model. See “Generating Code and Executables
from Subsystems” in the Real-Time Workshop documentation for details.

Nonvirtual Subsystem Code Generation
Real-Time Workshop now lets you generate code modules at the subsystem
level. This feature applies only to nonvirtual subsystems. With nonvirtual
subsystem code generation, you control how many files are generated, as well
as the file and function names. To set options for nonvirtual subsystem code
generation, you use the subsystem’s Block Parameters dialog box.

See “Nonvirtual Subsystem Code Generation” in the Real-Time Workshop
documentation for details.

Compatibility Considerations
Nonvirtual subsystem code generation replaces the Function management
code generation options available in previous releases. Nonvirtual subsystem
code generation is a more general and flexible mechanism for controlling the
number and size of generated files than the Function management code
generation options, File splitting and Function splitting.

Standard Filename Extensions for Generated Files
Real-Time Workshop now generates source code and header files that have
standard filename extensions —.c and .h.

145

Real-Time Workshop® Release Notes

Compatibility Considerations
In previous releases, Real-Time Workshop gave some generated files special
filename extensions, such as .prm or .reg. As of this release, Real-Time
Workshop generates source code and header files that have standard filename
extensions. The file naming conventions for the following generated files
have changed:

File Old Filename New Filename

Model registration file model.reg model_reg.h

Model parameter file model.prm model_prm.h

BlockIOSignals structure
file

model.bio model_bio.c

ParameterTuning file model.pt model_pt.c

External mode data type
transition file

model.dt model_dt.c

If your application code uses #include statements to include the Real-Time
Workshop generated files (such as model.prm), you may need to modify these
statements. See “Files Created During Build Process” in the Real-Time
Workshop documentation.

hilite_system and Code Tracing
Real-Time Workshop uses a new command, hilite_system, to write
system/block identification tags in the generated code. The tags are designed
to help you identify the block, in your source model, that generated a given
line of code.

For more information on identification tags and code tracing, see “Tracing
Generated Code Back to Your Simulink Model”.

Compatibility Considerations
In previous releases, Real-Time Workshop used the locate_system command
to trace a tag back to the generating block. Real-Time Workshop now uses
the new hilite_system command to trace identification tags instead of

146

Version 4.0 (R12) Real-Time Workshop

locate_system. Starting with this release, use the hilite_system command
to trace a tag back to the generating block.

Generation of Parameter Comments
The Force generation of parameter comments option in the General
code generation optionssection of the Real-Time Workshop pane of the
Simulink Parameters dialog box controls the generation of comments in
the model parameter structure (rtP) declaration in model_prm.h. This lets
you reduce the size of the generated file for models with a large number of
parameters.

Borland 5.4 Compiler Support
The Real-Time Workshop now supports Version 5.4 of the Borland C/C++
compiler.

Enhanced Makefile Include Path Rules
Two new rules and macros have been added to Real-Time Workshop template
makefiles. These rules let you add source and include directories to makefiles
generated by Real-Time Workshop without having to modify the template
makefiles themselves. This feature is useful if you need to include your code
when building S-functions.

Column-Major Matrix Ordering
Real-Time Workshop now uses column-major ordering for two-dimensional
signal and parameter data instead of row-major ordering.

Compatibility Considerations
In previous releases, Real-Time Workshop used row-major ordering for
two-dimensional signal and parameter data. Real-Time Workshop now uses
column-major ordering.

If your hand-written code interfaces to such signals or parameters via
ExportedGlobal, ImportedExtern, or ImportedExternPointer declarations,
review any code that relies on row-major ordering, and make appropriate
revisions.

147

Real-Time Workshop® Release Notes

S-Function Target MEX-Files Must Be Rebuilt

Compatibility Considerations
S-function MEX-files generated by the S-function target under V3.0 (R11)
are not compatible with V4.0 (R12). The incompatibilities are due to new
features, such as parameter pooling.

If you have built S-function MEX-files with the S-function target under V3.0
(R11), you must rebuild them. See “The S-Function Target” in the Real-Time
Workshop documentation for more information.

Target Language Compiler Enhancements
The Target Language Compiler has been enhanced as follows:

• TLC file parsed before execution

The Target Language Compiler now completes parsing of the TLC file just
before execution. This aids development because syntax errors are caught
the first time the TLC file is run instead of the first time the offending
line is reached.

• Speed enhanced

The Target Language Compiler features speed improvements throughout
the software. In particular, the speed of block parameter generation has
been enhanced.

• Build directory created and used

The Target Language Compiler now creates and uses a build directory.
The build directory is in the current directory and prevents generated code
from clashing with other files generated for other targets, and keeps your
model directories maintenance to a minimum.

• Profiler added

A new profiler has been added to the Target Language Compiler to help you
find performance problems in TLC code.

• model.rtw changes

This release contains a new format and changes to the model.rtw file and
the size of the file has been reduced.

148

Version 4.0 (R12) Real-Time Workshop

• Block parameter aliases added

Aliases have been added for block parameters in the model.rtw file.

• Text expansion improved

TLC contains new, flexible methods for text expansion from within strings.

• Column-major ordering used

Two-dimensional signal and parameter data now use column-major
ordering.

• Record handling improved

TLC now utilizes new record data handling.

• Language semantics changed

- Improved EXISTS behavior.

- New TLC primitives for record handling.

- Functions can return records.

- Records can be printed.

- Records can be empty.

- Record aliases are available.

- Records can be expanded with %<>.

- Built-in functions cannot be undefined via %undef.

- Short circuit evaluation for Boolean operators, %if-%elseif-%endif,
and ?: expressions are handled properly

- Conversions of values to and from MATLAB.

- Enhanced conversion rules for FEVAL. You can now pass records and
structs to FEVAL.

- Relational operators can be used with nonfinite values.

- Loop control variables are local to loop bodies.

• Built-in functions added

The following built-in functions have been added to the language:

FIELDNAMES

149

Real-Time Workshop® Release Notes

GENERATE_FORMATTED_VALUE
GETFIELD
ISALIAS
ISEMPTY
ISEQUAL
ISFIELD
REMOVEFIELD
SETFIELD

• Built-in values added

The following built-in values have been added to the language:

INTMAX
INTMIN
TLC_FALSE
TLC_TRUE
UINTMAX

• Support for inlined code added

Support has been added for two-dimensional signals in inlined code.

Compatibility Considerations
If you are upgrading from Release 11 to Release 12, the following changes may
affect your TLC code:

• Nested evaluations are no longer supported. Expressions such as the
following are no longer supported:

%<LibBlockParameterValue(%<myVariable>,"", "", "")>

You must convert these expressions into equivalent non-nested expressions.

• Aliases are no longer automatically created for Parameter blocks while
reading in the Real-Time Workshop files.

• You cannot change the contents of a "Default" record after it has been
created. In the previous TLC, you could change a "Default" record and see
the change in all the records that inherited from that default record.

• The %codeblock and %endcodeblock constructs are no longer supported.

150

Version 4.0 (R12) Real-Time Workshop

• %defines and macro constructs are no longer supported.

• Use of line continuation characters (... and \) are not allowed inside of
strings. Also, to place a double quote (") character inside a string, you
must use \". Previously, the Target Language Compiler allowed you to use
""" to get a double quote in a string.

• Semantics have been formalized to %include files in different contexts (e.g.,
from generate files, inside of %with blocks, etc.) %include statements are
now treated as if they were read in from the global scope.

• The previous the Target Language Compiler had the ability to split
function definitions (and other directives) across include file boundaries
(e.g., you could start a %function in one file and %include a file that had
the %endfunction). This no longer works.

• Nested functions are no longer allowed. For example,

%function foo ()
%function bar ()
%endfunction

%endfunction

• Built-in functions cannot be undefined via %undef. It is possible to undefine
built in values, but this practice is not encouraged.

• Recursive records are no longer allowed. For example,

Record1 {
Val 2
Ref Record2

}
Record2 {

Val 3
Ref Record1

}

• Record declaration syntax has changed. The following code fragments
illustrate the differences between declaring a record recVar in previous
versions of the Target Language Compiler and the current release.

- Previous versions:

%assign recVarAlias = recVar { ...

151

Real-Time Workshop® Release Notes

field1 value1 ...
field2 value2 ...
...
fieldN valueN ...

}

- Current version:

%createrecord recVar { ...
field1 value1 ...
field2 value2 ...
...
fieldN valueN ...

}

• Semantics of the EXISTS function have changed. In the previous release of
TLC, EXISTS(var) would check if the variable represented by the string
value in var existed. In the current release of TLC, EXISTS(var) checks
to see if var exists or not.

To emulate the behavior of EXISTS in the previous release, replace

EXISTS(var)

with

EXISTS("%<var>")

152

Compatibility Summary for Real-Time Workshop

Compatibility Summary for Real-Time Workshop
This table summarizes new features and changes that might cause
incompatibilities when you upgrade from an earlier version, or when you
use files on multiple versions. Details are provided in the description of the
new feature or change.

Version (Release) New Features and Changes with Version Compatibility Impact

Latest Version
V6.4 (R2006a)

See the Compatibility Considerations subheading
for each of these new features or changes:

• “Format Enhancements for model.rtw File” on page 12

• “Changes to TLC Files in matlabroot/rtw/c/tlc” on page 15

V6.3 (R14SP3) See the Compatibility Considerations subheading
for each of these new features or changes:

• “Customizations to Built-In Blocks” on page 20

• “Use slbuild Instead of rtwgen” on page 20

• “Model Hardware Configuration Parameters Now Honor Device Type
Restrictions” on page 21

• “rem Function No Longer Supports Tunable Arguments” on page 22

V6.2.1 (R14SP2+) None

V6.2 (R14SP2) None

V6.1 (R14SP1) None

153

Real-Time Workshop® Release Notes

Version (Release) New Features and Changes with Version Compatibility Impact

V6.0 (R14) See the Compatibility Considerations subheading
for each of these new features or changes:

• “Support for New Simulink Model Referencing (Model Block) Feature”
on page 43

• “New C-API for Accessing Model Block Outputs and Parameter Data”
on page 45

• “Back-Propagating Auto, Test-pointed Signal Labels Through
Subsystem Output Ports” on page 48

• “Declaring Wide Signals, States, and Parameters as
ImportedExternPointer” on page 48

• “External Mode Changes May Impact Customized Makefiles and
Static Main files” on page 51

• “Upgrading Custom Transport Layers for External Mode to
Single-Channel Architecture” on page 52

• “Preventing User Source Code from Being Deleted from Build
Directories” on page 55

• “Hook Files Describing Hardware Characteristics No Longer
Supported” on page 57

• “New Asynchronous Block Library” on page 61

• “Symbol Formatting Options Replaced” on page 72

• “Global Data Structure Identifiers for Targets Now Incorporate Model
Name” on page 74

• “Hardware Configuration Parameters” on page 76

• “Defining and Displaying Custom Target Options” on page 77

• “New SelectCallback Function for System Target Files” on page 79

• “Shared Utilities Directory and the Build Process” on page 79

• “Tornado Target Requires Macro in Template Make File” on page 82

• “Custom Storage Classes Can No Longer Be Used with GRT Targets”
on page 83

• “Accessing the Number of Sample Times from TLC for Custom
Targets” on page 85

• “TLC TLCFILES Built-In Now Returns Full Path to Model File Rather
Than Relative Path” on page 85

154

Compatibility Summary for Real-Time Workshop

Version (Release) New Features and Changes with Version Compatibility Impact

V5.1.1 (R13SP1+) See the Compatibility Considerations subheading
for each of these new features or changes:

• “Error Resulting from Inaccessible Signal Reporting No Longer
Reported” on page 89

V5.1 (R13SP1) None

V5.0.1 (R13+) None

V5.0 (R13) See the Compatibility Considerations subheading
for each of these new features or changes:

• “Comments Not Generated for Reduced Blocks When "Show
eliminated statements" Is Off” on page 96

• “Code for Nonvirtual Subsystems Is Now Reusable” on page 102

• “Packaging of Generated Code Files Simplified” on page 104

• “Most Targets Use rtModel Instead of Root SimStruct” on page 106

• “Hook Files Required for Communicating Target-specific Word
Characteristics” on page 108

• “Code Generation Unified for Real-Time Workshop and Stateflow”
on page 109

• “Conditional Input Branch Execution Optimization” on page 109

• “model.rtw Changes” on page 114

• “Efficiency of Code Generated for GRT and GRT-Malloc Targets
Improved ” on page 115

• “Logging Code Moved to the Real-Time Workshop Library” on page 115

• “Custom Code Blocks Moved from Simulink Library” on page 116

• “Target Language Compiler Changes” on page 116

155

Real-Time Workshop® Release Notes

Version (Release) New Features and Changes with Version Compatibility Impact

V4.1 (R12+) See the Compatibility Considerations subheading
for each of these new features or changes:

• “Block Reduction Option On by Default” on page 125

• “Buffer Reuse Code Generation Option” on page 125

• “Build Directory Validation” on page 126

• “Target Language Compiler Enhancements” on page 130

• “RTWInfo Property Changed” on page 132

V4.0 (R12) See the Compatibility Considerations subheading
for each of these new features or changes:

• “Real-Time Workshop Embedded Coder” on page 139

• “Other User Interface Enhancements” on page 140

• “Support for New Simulink Advanced Options Pane” on page 140

• “Model Parameter Configuration Dialog Box” on page 141

• “External Mode Enhancements” on page 142

• “Build Directory” on page 143

• “Code Optimization Features” on page 144

• “Nonvirtual Subsystem Code Generation” on page 145

• “Standard Filename Extensions for Generated Files” on page 145

• “hilite_system and Code Tracing” on page 146

• “Column-Major Matrix Ordering” on page 147

• “S-Function Target MEX-Files Must Be Rebuilt” on page 148

• “Target Language Compiler Enhancements” on page 148

156

	toc
	Summary by Version
	About Release Notes
	New Features and Changes
	Version Compatibility Considerations
	Fixed Bugs and Known Problems
	Related Documentation at Web Site

	Version 6.4.1 (R2006a+) Real-Time Workshop
	Version 6.4 (R2006a) Real-Time Workshop
	New Build Information Application Program Interface
	New Mechanism for Customizing Post Code Generation Build Process
	New Model Configuration Option for Suppressing Makefile Generati
	New RSim Target Option for Feeding Inport Blocks with MAT-File D
	Switch Block Optimization for Wide Control Port Signals
	Multiport Switch Block Enhanced to Generate Default Switch Case
	C++ Language Support Enhancements
	Limitations

	Support for Simulink Signal Object Initialization
	Compatibility Considerations

	Identifiers and Model Reference Applications
	Support for Simulink Parameter Object Data Type Enhancements
	Support for New Simplest Rounding Mode for Fixed-Point Simulink
	Name Change for PrevZC Identifier in Generated Code
	Format Enhancements for model.rtw File
	New Target Language Compiler Library Functions That Support the
	Compatibility Considerations

	Changes to TLC Files in matlabroot/rtw/c/tlc
	Compatibility Considerations

	New and Enhanced Demos
	Documentation Enhancements

	Version 6.3 (R14SP3) Real-Time Workshop
	New rtw_precompile_libs Function
	Support for Subsystem Latch Enhancements
	Support for Variable Transport Delay Enhancements
	C++ Target Language Support for Real-Time Windows Target and Ext
	Rapid Simulation Target Enhanced for Use with Distributed Comput
	Simulink Model and MATLAB Desktop Window Interaction Enhanced
	Customizations to Built-In Blocks
	Compatibility Considerations

	Use slbuild Instead of rtwgen
	Compatibility Considerations

	Model Hardware Configuration Parameters Now Honor Device Type Re
	Compatibility Considerations

	rem Function No Longer Supports Tunable Arguments
	Compatibility Considerations

	Documentation Enhancements

	Version 6.2.1 (R14SP2+) Real-Time Workshop
	Version 6.2 (R14SP2) Real-Time Workshop
	Model Advisor Enhancements
	Rate Transition Block Enhancements
	Data Store Read Block Enhancement
	C++ Target Language Support
	Limitations

	Support for Open Watcom 1.3 Compiler
	New Configuration Option for Optimizing Floating-Point to Intege
	Task Priority Block Parameters Renamed for Consistency
	New RSim Target Configuration Option
	LibManageAsyncCounter Function Added to asynclib.tlc Library
	Enhanced Documentation on Integrating Legacy and Custom Code wit
	Documentation Enhancements

	Version 6.1 (R14SP1) Real-Time Workshop
	Changes from the Previous Release

	Version 6.0 (R14) Real-Time Workshop
	Tornado Support for VxWorks Target
	User Interface and Configuration Enhancements
	New Model Explorer and Configuration Parameters Dialogs for Cont
	Generated Code Report Integrated into Model Explorer
	Model Advisor Helps You to Configure and Optimize Targets
	Real-Time Workshop Now Supports Intel Compiler

	Support for New Simulink Model Referencing (Model Block) Feature
	Compatibility Considerations for Custom Targets

	Signal, Parameter Handling, and Interfacing Enhancements
	New C-API for Accessing Model Block Outputs and Parameter Data
	Back-Propagating Auto, Test-pointed Signal Labels Through Subsys
	Declaring Wide Signals, States, and Parameters as ImportedExtern
	Bus Creator Blocks Now Can Emit Structures
	New Options for Controlling Resolution of Signal Objects for Nam
	CustomStorageClass and StorageClass Properties Initialized Diffe

	External Mode Enhancements
	External Mode Changes May Impact Customized Makefiles and Static
	Floating Scopes Now Work in External Mode
	Serial Transport Mechanism for External Mode on Windows
	Upgrading Custom Transport Layers for External Mode to Single-Ch
	New Static Memory Allocation Option for External Mode Code Gener

	Code Customization Enhancements
	Source Code for User S-Functions Easier to Include
	Custom Code Block Library Enhancements
	Combining User C++ Files with Generated Code
	Preventing User Source Code from Being Deleted from Build Direct
	Designating Target-Specific Math Functions
	Hook Files Describing Hardware Characteristics No Longer Support

	Timing-Related Enhancements
	Application Lifespan Option Optimizes Timer Data Storage
	Enabling the Rapid Simulation Target to Time Out
	New Asynchronous Block Library
	Automatic Slow-to-Fast and Fast-to-Slow Transition Detection for
	Automatic Insertion of Rate Transition Blocks
	Enhanced Absolute and Elapsed Time Computation
	Improved Single-Tasking Code Generation

	GRT and ERT Target Unification
	Code Format Unification
	Compatibility Considerations for GRT-Based Targets
	Real-Time Workshop and Real-Time Workshop Embedded Coder Featur
	Symbol Formatting Options Replaced

	Global Data Structure Identifiers for Targets Now Incorporate Mo
	Compatibility Considerations

	Support for Simulink Configuration Set Feature
	Suppport for New Simulink getActiveConfigSet Function
	New switchTarget Function

	Hardware Configuration Parameters
	Compatibility Considerations

	Enhancements and Changes that Affect Custom Targets
	Defining and Displaying Custom Target Options
	New SelectCallback Function for System Target Files

	Shared Utilities Directory and the Build Process
	Compatibility Considerations

	Tornado Target Requires Macro in Template Make File
	Compatibility Considerations

	Custom Storage Classes Can No Longer Be Used with GRT Targets
	Compatibility Considerations

	Target Language Compiler Enhancements and Changes
	ISSLPRMREF TLC Built-In Supports Parameter Sharing with Simulink
	New Argument for TLC GENERATE_FORMATTED_VALUE Built-In Function
	Accessing the Number of Sample Times from TLC for Custom Targets
	TLC TLCFILES Built-In Now Returns Full Path to Model File Rather

	Documentation Enhancements

	Version 5.2 (R13SP2) Real-Time Workshop Toolbox
	Version 5.1.1 (R13SP1+) Real-Time Workshop Toolbox
	New -dr Command Line Switch in TLC Detects Cyclic Record Creatio
	Error Resulting from Inaccessible Signal Reporting No Longer Rep
	Compatibility Considerations

	Version 5.1 (R13SP1) Real-Time Workshop Toolbox
	Version 5.0.1 (R13+) Real-Time Workshop Toolbox
	Expanded Hook File Options
	Hook Files for Customizing Make Commands

	Version 5.0 (R13) Real-Time Workshop Toolbox
	Compiler Support Enhancements
	Expanded Support for Borland C Compilers
	Lcc Now Links Libraries in Directory sys/lcc/lib

	Model Configuration Features and Enhancements
	Diagnostics Pane Items Classified into Logical Groups
	Comments Not Generated for Reduced Blocks When "Show eliminated
	New General Code Appearance Options
	Identifier Construction for Generated Code Has Been Simplified
	GUI Control over Behavior of Assertion Blocks in Generated Code
	GUI Control Over TLC %assert Directive Evaluation

	Code Generation Infrastructure Enhancements
	Code for Nonvirtual Subsystems Is Now Reusable
	Packaging of Generated Code Files Simplified
	Most Targets Use rtModel Instead of Root SimStruct
	Hook Files Required for Communicating Target-specific Word Chara
	Code Generation Unified for Real-Time Workshop and Stateflow
	Conditional Input Branch Execution Optimization

	Block Enhancements
	New Rate Transition Block
	S-Function API Extended to Permit Users to Define DWork Properti
	Lookup Table Blocks Use New Run-Time Library for Smaller Code
	Relay Block Now Supports Frame-Based Processing
	Transport Delay and Variable Transport Delay Improvements
	Storage Classes for Data Store Memory Blocks

	Rapid Simulation Target Enhancement
	Compatibility Considerations

	External Mode Enhancements
	Simulink Data Object Enhancements
	model.rtw Changes
	Compatibility Considerations

	Generate HTML Report Option Available for Additional Targets
	Efficiency of Code Generated for GRT and GRT-Malloc Targets Impr
	Compatibility Considerations

	Logging Code Moved to the Real-Time Workshop Library
	Compatibility Considerations

	Custom Code Blocks Moved from Simulink Library
	Compatibility Considerations

	Target Language Compiler Changes
	Compatibility Considerations

	Documentation Enhancements
	Fixed Bugs
	ImportedExtern and ImportedExternPointer Storage Class Data No L
	External Mode Properly Handles Systems with no Uploadable Blocks
	Nondefault Ports Now Usable for External Mode on Tornado Platfor
	Initialize Block Outputs Even If No Block Output Has Storage Cla
	Code Is Generated Without Errors for Single Precision Data Type
	Duplicate #include Statements No Longer Generated
	Custom Storage Classes Ignored When Unlicensed for Embedded Code
	Erroneous Sample Time Warning Messages No Longer Issued
	Discrete Integrator Block with Rolled Reset No Longer Errors Out
	Rate Limiter Block Code Generation Limitation Removed
	Multiport Switch with Expression Folding Limitation Removed
	Pulse Generator Code Generation Failures Rectified
	Stateflow I/O with ImportedExternPointer Storage Class Now Handl
	Parameters for S-Function Target Lookup Blocks May Now Be Made T
	PreLookup Index Search Block Now Handles Discontiguous Wide Inpu
	SimViewingDevice Subsystem No Longer Fails to Generate Code
	Accelerator Now Works with GCC Compiler on UNIX
	Expression Folding Behavior for Action Subsystems Stabilized
	Dirty Flag No Longer Set During Code Generation
	Subsystem Filenames Now Completely Checked for Illegal Character
	Sine Wave and Pulse Generator Blocks No Longer Needlessly Use Ab
	Generated Code for Action Subsystems Now Correctly Guards Execut
	Report Error when Code Generation Requested for Models with Alge

	Limitations for HP and IBM Platforms

	Version 4.1 (R12.1) Real-Time Workshop
	Block Reduction Option On by Default
	Compatibility Considerations

	Buffer Reuse Code Generation Option
	Compatibility Considerations

	Build Directory Validation
	Compatibility Consideration

	Build Subsystem Enhancements
	C API for Parameter Tuning Documented
	Code Readability Improvements
	Support for Control Flow Blocks
	Expression Folding
	External Mode Enhancements
	Generate Comments Option
	Include System Hierarchy in Identifiers Option
	Rapid Simulation Target Support for Inline Parameters
	S-Function Target Enhancements
	Storage Classes for Block States
	Support for tilde (~) in Filenames on UNIX Platforms
	Target Language Compiler Enhancements
	Compatibility Considerations

	RTWInfo Property Changed
	Compatibility Considerations

	Fixed Bugs
	Block Reduction Crash Fixed
	Build Subsystem Gives Better Error Message for Function Call Sub
	Check Consistency of Parameter Storage Class and Type Qualifier
	Code Optimization for Unsigned Saturation and DeadZone Blocks
	Correct Code Generation of Fixed-Point Blockset Blocks in DSP Bl
	Correct Compilation with Green Hills and DDI Compilers
	Fixed Build Error with Models Having Names Identical to Windows
	Fixed Error Copying Custom Code Blocks
	Fixed Error in commonmaplib.tlc
	Fixed Name Clashes with Run-Time Library Functions
	Improved Handling of Sample Times
	Look-Up Table (n-D) Code Generation Bug Fix
	Parenthesize Negative Numerics in Fcn Block Expressions
	Unnecessary Warnings and Declarations Removed from Generated Cod
	Retain .rtw File Option Now Works in Accelerator Mode
	S-Function Target Memory Allocation Bug Fix
	TLC Bug Fixes

	Version 4.0 (R12) Real-Time Workshop
	Real-Time Workshop Embedded Coder
	Compatibility Considerations

	Support for Simulink Data Objects
	Support for ASAP2 Data Files
	Enhanced Real-Time Workshop Configuration Pane
	Other User Interface Enhancements
	Compatibility Considerations

	Support for New Simulink Advanced Options Pane
	Compatibility Considerations

	Model Parameter Configuration Dialog Box
	Compatibility Considerations

	Support for Tunable Expressions
	S-Function Target Enhancements
	External Mode Enhancements
	Compatibility Considerations

	Build Directory
	Compatibility Considerations

	Code Optimization Features
	Compatibility Considerations

	Subsystem Code Generation
	Nonvirtual Subsystem Code Generation
	Compatibility Considerations

	Standard Filename Extensions for Generated Files
	Compatibility Considerations

	hilite_system and Code Tracing
	Compatibility Considerations

	Generation of Parameter Comments
	Borland 5.4 Compiler Support
	Enhanced Makefile Include Path Rules
	Column-Major Matrix Ordering
	Compatibility Considerations

	S-Function Target MEX-Files Must Be Rebuilt
	Compatibility Considerations

	Target Language Compiler Enhancements
	Compatibility Considerations

	Compatibility Summary for Real-Time Workshop

